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A

Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotrovic Media

Under the sponsorship of the ONR contract N00014-90-J-1002 we have published 9

refereed journal and conference papers.

The coupled-wave theory is generalized to analyze the diffraction of waves by chiral

gratings for arbitrary angles of incidence and polarizations. Numerical results for the

Stokes parameters of diffracted Floquet modes versus the thickness of chiral gratings with

various chiralities are calculated. Both horizontal and vertical incidences are considered for

illustration. The diffracted waves from chiral gratings are in general elliptically polarized;

and in some particular instances, it is possible for chiral gratings to convert a linearly

polarized incident field into two nearly circularly polarized Floquet modes propagating in

different directions.

A general spectral domain formulation to the problem of radiation of arbitrary

distribution of sources embedded in a horizontally stratified arbitrary magnetized linear

plasma is developed. The fields are obtained in terms of electric and magnetic type dyadic

Green's functions. The formulation is considerably simplified by using the kDB system

of coordinates in conjunction with the Fourier transform. The distributional singular

behavior of the various dyadic Green's functions in the source region is investigated and

taken into account by extracting the delta function singularities. Finally, the fields in any

arbitrary layer are obtained in terms of appropriately defined global upward and downward

reflection and transmission matrices.

We investigated a method for the calculation of the current distribution, resistance,

and inductance matrices for a system of coupled superconducting transmission Enes having

finite rectangular cross section. These calculations allow accurate characterization of both
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high-T and low-T, superconducting strip transmission lines. For a single stripline geometry

with finite ground planes, the current distribution, resistance, inductance, and kinetic

inductance are calculated as a function of the penetration depth for various film thickness.

These calculations are then used to determine the penetration depth for Nb, NbN, and

YBa 2CUaO7 - superconducting thin films from the measured temperature dependence of

the resonant frequency of a stripline resonator. The calculations are also used to convert

measured temperature dependence of the quality factor to the intrinsic surface resistance

as a function of temperature for a Nb stripline resonator.

The electromagnetic radiation from a VLSI chip package and heatsink structure

is analysed by means of the finite-difference time-domain (FD-TD) method. The FD-

TD algorithm implemented incorporates a multi-zone gridding scheme to accommodate

fine grid cells in the vicinity of the heatsink and package cavity and sparse gridding in

the remainder of the computational domain. The issues pertaining to the effects of the

heatsink in influencing the overall radiating capacity of the configuration are addressed.

Analyses are facilitated by using simplified heatsink models and by using dipole elements as

sources of electromagnetic energy to model the VLSI chip. The potential for enhancement

of spurious emissions by the heatsink structure is examined. For heatsinks of typical

dimensions, resonance is possible within the low gigahertz frequency range.

Because the effects of diffraction during proximity-print x-ray lithography are of

critical importance, a number of previous researchers have attempted to calculate the

diffraction patterns and minimum achievable feature sizes as a function of wavelength and

gap. Work to date has assumed that scalar diffraction theory is applicable-as calculated, for

example, by the Rayleigh-Sommerfeld formulation-and that Kirchhoff boundary conditions

can be applied. Kirchhoff boundary conditions assume that the fields (amplitude and

phase) are constant ;n the open regions between absorbers, and a different constant in

regions just under the absorbers (i.e., that there are no fringing fields). An x-ray absorber
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is, however, best described as a lossy dielectric that is tens or hundreds of wavelengths

tall, and hence Kirchhoff loundary conditions are unsuitable. We have instead used two

numerical techniques to calculate accurate diffracted fields from gold absorbers for two

cases: a 30 nm-wide line at A = 4.5 nm, and a 100 nm-wide line at A = 1.3 nm. We

show that the use of Kirchhoff boundary conditions introduces unphysically high spatial

frequencies into the diffracted fields. The suppression of these frequencies-which occurs

naturally without the need to introduce an extended source or broad spectrum-improves

exposure latitude for mask features near 0.1 gm and below.

In order to understand the physical meaning of rational reflection coefficients in

one-dimensional inverse scattering theory for optical waveguide design, we have studied

the relation between the poles of the transverse reflection coefficient and the modes in

inhomogeneous dielectrics. By using a stratified medium model it is shown that these

poles of the reflection coefficient have a one-to-one correspondence to the discrete modes,

which are the guided and leaky modes. The radiation modes have continuous real values of

transverse wave numbers and are not represented by the poles of the reflection coefficient.

Based on these results, applications of the Gel'fand-Levitan-Marchenko theory to optical

waveguide synthesis with the rational function representation of the transverse reflection

coefficient are investigated.

In compact modules of high performance computers, signal transmission lines be-

tween integrated circuit chips are embedded in multilayered dielectric medium. These

signal lines are usually placed in different layers an- run perpendicular to each other. The

interaction between the orthogonal crossing lines and the signal line affects its propagation

characteristics and may cause considerable signal distortion.
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The interaction of a pair of crossing lines in isotropic medium has been studied

using a time-domain approach, where coupling is described qualitatively. This method

becomes computationally expensive when the number of crossing lines increases. With

many identical crossing strips uniformly distributed above the signal line, the transmis-

sion properties are characterized by stopbands due to the periodicity of the structure.

Periodic structure have been investigated using frequency-domain methods. Periodically

nonuniform microstrip lines in an enclosure are analyzed on the basis of a numerical field

calculation. A technique based on the network-analytical formulism of electromagnetic

fields has been used to analyze striplines and finlines with periodic stubs. The propagation

characteristics of waves along a periodic array of parallel signal lines in a multilayered

isotropic structure in the presence of a periodically perforated ground plane and that in

a mesh-plane environment have been studied. More recently, the effect of the geometrical

properties on the propagation characteristics of strip lines with periodic crossing strips

embedded in a shielded one-layer isotropic medium have been investigated. Both open

and closed multilayered uniaxially anisotropic structures are considered. A full-wave anal-

ysis is used to study the propagation characteristics of a microstrip line in the presence

of crossing strips. The signal line and the crossing strips are assumed to be located in

two arbitrary layers of a stratified uniaxially anisotropic medium. An integral equation

formulation using dyadic Green's functions in the periodically loaded structure is derived.

Galerkin's method is then used to obtain the eigenvalue equation for the propagation con-

stant. The effects of anisotropy on the stopband properties are investigated. Numerical

results for open and shielded three-layer uniaxially anisotropic media are presented.

For microwave integrated circuit applications, the characteristics of interconnects

have been investigated for the propagation modes, time response, crosstalk, coupling,

delay, etc. In these analyses, it is assumed that quasi-TEM modes are guided along the

multiconductor transmission lines. The analysis were performed for arbitrary number of

transmission lines where the load and the source conditions were presented in terms of the
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modal reflection and transmission coefficient matrices.

To perform the quasi-TEM analysis, the capacitance matrix for the multiconductor

transmission line has to be obtained first. Both the spectral and the spatial domain

methods have been proposed to calculate the capacitance matrix. In the spectral domain

methods, two side walls are used to enclose the whole transmission line structure, and the

thickness of the strip lines has not been considered. In using the spatial domain method,

the structure has to be truncated to a finite extent to make the numerical implementation

feasible. The infinite extent of the structure was also incorporated, but only a two-layer

medium was considered.

In practical microwave integrated circuits, the dielectric loss due to the substrate

and the conductor loss due to the metallic strips are also studied in the analysis of circuit

performances.

Based on the scalar Green's function, a set of coupled integral equations is obtained

for the charge distribution on the strip surfaces. Pulse basis functions and a point-matching

scheme is used to solve numerically the set of integral equations for the charge distribution,

and hence the capacitance matrix. The duality between the electrostatic formulation and

the magnetostatic one is applied to calculate the inductance matrix. The conductance

matrix is obtained by using the duality between the electrostatic problem and the current

field problem. A perturbation method is used to calculate the resistance matrix.

Finally, a transmission line analysis is derived to obtain the transfer matrix for multi-

conductor uniform lines, which significantly reduces the effort in treating the load and the

source conditions. Transient responses are obtained by using the Fourier transform. The

results for two coupled lines are obtained.

With the ever increasing speed and density of modern integrated circuits, the need

for electromagnetic wave analysis of phenomena such as the propagation of transient sig-
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nals, especially the distortion of signal pulses, becomes crucial. One of the most important

causes of pulse distortion is the frequency dependence of conductor loss, which is caused

by the "skin effect", and which can be incorporated into the circuit models for transmis-

sion lines as frequency-dependent resistance and inductance per unit length. Efficient and

accurate algorithms for calculating these parameters are increasingly important.

We have developed a hybrid cross-section finite element/coupled integral equation

method. The technique is a combination of a cross-section finite element method, which is

best for high frequencies. An interpolation between the results of these two methods gives

very good results over the entire frequency range, even when few basis functions are used.

In the cross-section method, we divide each conductor into triangular patches and

choose one of the patches from the return conductor to be our reference. We then calculate

the resistance and inductance matrices for the patches. Using two conditions on the system,

that the total current in each wire is the sum of the currents in the patches, and that the

voltage on each patch in a wire must be the same (no transverse currents), we can reduce

the matrices for the patches to the matrices for the wires. In the Weeks method, the

patches are rectangles, and the quadruple integral is done quite easily in closed form.

However, it is also possible to evaluate the quadruple integral in closed form for triangular

patches, although the mathematics leading to this result is quite involved, and the final

form of the answer is complicated. We therefore use triangular patches as the most flexible

means of modelling conductors with arbitrary cross-sections; polygons are covered exactly,

and we are able to model quite closely other shapes, such as circles.

As frequency increases, the need to keep the uniform current approximation valid in

the patches requires either the addition of many more patches as the skin depth decreases,

or a redistribution of the existing patches to the surface, where the current is. However,

changing the distribution of patches makes it necessary to recalculate the resistance and

inductance matrices of the patches, thus increasing the computation time. Since we use a

7



surface integral equation method for high frequencies, we do not change the distribution

of the triangular patches for the cross-section method as we increase the frequency.

For high frequencies, we use a coupled surface integral equation technique. Under

the quasi-TEM assumption, the frequency-dependent resistance and inductance result from

the power dissipation and magnetic stored energy, which can be calculated by solving a

magnetoquasistatic problem, with the vector potential satisfying Laplace's equation in the

region outside all the conductors. The resistance and inductance are usually given by

integrals of these field quantities over the cross-sections of the wires, but by using some

vector identities it is possible to convert these expressions to integrals only over the surfaces

of the wires. These expressions contain only the current at the surface of each conductor,

the derivative of that current normal to the surface, and constants of the vector potential.

A coupled integral equation is then derived to relate these quantities through Laplace's

equation and its Green's function outside the conductors and the diffusion equation and its

Green's function inside the conductors. The method of moments with pulse basis functions

is used to solve the integral equations. This method differs from previous work in that the

calculation of resistance and inductance is based on power dissipation and stored magnetic

energy, rather than on impedance ratios. It will therefore be more easily extended to

structures where non-TEM propagation can occur.

For the intermediate frequency range, where the conductors are on the order of the

skin depth, were found it very efficient to interpolate between the results of the cross-

section and surface methods. The interpolation function was based on the average size of

the conductors, measured in skin depths, and was of the form 1/(1 + 0.16a2/64), where it a

is the average cross-section of the conductors, and 6 is the skin depth.

8



PUBLICATIONS SUPPORTED BY ONR CONTRACT N00014-90-J-1002

Analysis of diffraction from chiral gratings (S. H. Yueh and J. A. Kong), Journal of
Electromagnetic Waves and Applications, Vol. 5, No. 7, 701-714, 1991.

Dyadic Green's functions in a planar stratified, arbitrarily magnetized linear plasma (T.
M. Habashy, S. M. Ali, J. A. Kong, and M. D. Grossi), Radio Science, Vol. 26, No. 3,
701-716, May - June, 1991.

Current distribution, resistance, and inductance for superconducting strip transmission
lines (D. M. Sheen, S. M. Ali, D. E. Oates, R. S. Withers, and J. A. Kong), IEEE Trans.
on Applied Superconductivity, Vol. 1, No. 2, 108-115, June, 1991.

Electromagnetic radiation from a VLSI package and heatskin configuration (S. Y. Poh,
C. F. Lee, K. Li, R. T. Shin, and J. A. Kong), submitted to IEEE 1991 International
Symposium on Electromagnetic Compatibility, Hyatt Cherry Hill, Cherry Hill, NJ, Au-
gust 13 - 15, 393-398, 1991.

Electromagnetic calculation of soft x-ray diffraction from 01.Mm-scale gold structures
(M. L. Schatenburg, K. Li, R. T. Shin, J. A. Kong, D. B. Olster, and H. I. Smith),
Journal of Vacuum Science and Technology as part of the proceedings of the 35th
International Symposium on Electron, Ion, and Photon Beams (paper E84), Seattle,
Washington, 1-8, May 28-31, 1991.

An inverse scattering view of modal structures in stratified Media (J. Xia, A. K. Jordan,
and J. A. Kong), submitted for publication in Journal of Optical Society of America,
A, March 1991.

The propagation characteristics of signal lines with crossing strips in multilayered aniso-
tropic media (C. M. Lam, S. M. Ali, and J. A. Kong), Journal of Electromagnetic Waves
and Application, Vol. 4, No. 10, 1005-1021, 1990.

Modelling of lossy microstrip lines with finite thickness (J. F. Kiang, S. M. Ali and J.
A. Kong), Progress in Electromagnetics Research, No. 4, 85-116, Elsevier Publishing
Company, 1991.

A hybrid method for the calculation of resistance and inductance of transmission lines
with arbitrary cross section (M. J. Tsuk and J. A. Kong), IEEE Transactions on Mi-
crowave Theory and Techniques, Vol. 39, No. 8, 1338-1347, 1991.

9



Jomrnal of Electromagnetic Waves and Applications, Vol. 4, No. 10, 1005-1021, 100
® 1990 VSP

The Propagation Characteristics of Signal Lines with Crossing
c C C Strips in Multilayered Anisotropic Media

C C. . C.W. Lam, S.M. Ali, andJ. A. Kong

0 t C C Department of Electrical Engineering and Computer Science
C a C C and Research Laboratory of Electronics

O ( " Massachusetts Institute of Technology

C a C Cambridge, MA 02139, USA
S0 C. C Abstract- In this paper, full modal analysis is used to study the dispersion character-

- istics of microstrip lines periodically loaded with crossing strips in a stratified uniaxially
anisotropic medium. Dyadic Green's functions in the spectral domain for the multilayered
medium in conjunction with the vector Fourier transform (VFT) are used to formulate a
coupled set of vector integral equations for the current distribution on the signal line and
the crossing strips. Galerkin's procedure is applied to derive the eigenvalue equation for
the propagation constant. The effect of anisotropy for both open and shielded structures
on the stopband properties is investigated.

I. INTRODUCTION

In compact modules of high performance computers, signal transmission lines
between integrated circuit chips are embedded in multilayered dielectric media.
These signal lines ae *usually placed in different layers and run perpendicular
to each other. The interaction between the orthogonal crossing lines and the
signal line affects its propagation characteristics and may cause considerable signal
distortion.

The interaction of a pair of crossing lines in an isotropic medium hrs been stud-
ied using a time-domain approach [1], where coupling is described qualitatively.
This method becomes computationally expensive when the number of crossing
lines increases. With many identical crossing strips uniformly distributed above
the signal line, the transmission properties are characterized by stopbands due to
the periodicity of the structure. Periodic structures have been investigated using

frequency-domain methods. In [2], periodically nonuniform microstrip lines in an
enclosure are analyzed on the basis of a numerical field calculation. A technique

- -- based on the network-analytical formulism of electromagnetic fields has been used
to analyze striplines and finlines with periodic stubs [3]. The propagation charac-

C 0 ( teristics of waves along a periodic array of parallel signal lines in a multilayered

C C 4, C C isotropic structure in the presence of a periodically perforated ground plane is
C 0 ( C ' studied in [4] and that in a mesh-plane environment is studied in [5]. More re-

C | cently, the effect of the geometrical properties on the propagation characteristics of
C 0 strip lines with periodic crossing strips embedded in a shielded one-layer isotropic

CE. C medium have been investigated [6).
C0V

V o
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In this paper, both open and closed multilayered uniaxially anisotropic struc-
tures are considered. A full-wave analysis is used to study the propagation char-
acteristics of a microstrip line in the presence of crossing strips. The signal line
and the crossing strips are assumed to be located in two arbitrary layers of a

7 -. stratified uniaxially anisotropic medium. An integral equation formulation using

C 4W C r dyadic Green's functions in the periodically loaded structure is derived. Galerkin's

o t- .method is then used to obtain the eigenvalue equation for the propagation con-

c4C * c stant. The effects of anisotropy on the stopband properties are investigated.
C ) C Numerical results for open and shielded three-layer uniaxially anisotropic media

C a C" C are presented.

c)o . cr
c e C 11. FORMULATION OF THE PROBLEM

L0 C CIn this section, we present a dyadic Green's function formulation of the problem
shown in Fig. 1(a) where the microstrip line and the crossing strips are placed
at two different interfaces of a uniaxially anisotropic multilayered medium. The

crossing strips are assumed to be placed in a layer (i) and the signal line to be
in a layer (j). The crossing strips are considered to be periodic with period p as
shown in Fig. 1(b). In general, the permittivity and permeability tensors of an
arbitrary layer (1) are assumed to be given by

l 0
0 0

and

C 0 0 (2)

where I = 0,1,2, ... , n... t.
For the stratified medium, the electric fields in layers (i) and (j) due to current

distributions Ji(f) and 7i(f) may be expressed as

SW fffJJ dV' G~i(f,)r Ji(r ) + iw Jfff dV'=Gj' .7(F,- 'j) (3a)

= 0iv dr' -(y, '). 7i(f') + iw J v' ( ,). 7M.()(
where -7lm(F, fl) is the dyadic Green's function in layer (t) due to current sources
in layer (m).

For the multilayered structure shown in Fig. 1(a), the current distributions on

c ( 1 the conducting strips are assumed to be surface currents lying on planes transverse
IC . 4[, Ito z. Thus, if we are interested in the transverse electric fields and Ej in

Q0 . layers (i) and (j), respectively, we can write
S+ (4a)

C 4 | E ()(F) = T'.')(F)+ -- (.;-) (4b)

C01 1-



The Propagation Characteristica of Signai Lines with Croaaing Strips 1007

z

(0)

C@C-C (2)

OC.CI

C a C (2)

QOCC~crossing strips

0 0(. C! I

SI microstrlp line

• Li ".

(n)

-% Figure 1. Geometrical configuration of a signal line in layer j loaded with
\ crossing strips in layer i.

where E.") is the transverse electric field in layer (1) due to current sources in
layer (m), and is given by

ij dVGl ms (F,-- K (r ) (5)
C_ ( ' -r() is the surface current distribution in layer (m), and Glm(, r) )is the (2×x2)

_-C 4l - tran-sverse part of the dyadic Green's function Gi,,(f,fl).
I (,_0 Since the structure is assumed to be periodic in the y-direction, the electric field

"C, (
C

\OI. 0

_ C.vzzzzz
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E- ) and the surface currents K can be expressed using the Floquet harmonic
representation in the y-direction. In this case we can get

S-- iw J-' ' dyJ-. F, rK .(f()

where I= i,j, and

= (r ) = E dk.(e.(kn;zz) (6b)rPC -=- 0 0
"" O {/ "-"2nw

"-, = iz+9Y, k.,,=k1z+g, n, 2= no+-
C•C( 

p

(.C Here p is the period, ilo is the propagation constant of the dominant harmonic

C a C C in the Floquet representation, and Wim(ksn;z,z') is the spectral dyadic Green'so C • C function.
CC Using the explicit expressions for the dyadic Green's functions Gi ,a =(a) Gj

a oC.C ==(S)
and GJ [7], the transverse electric fields on the surface of the conducting strips
in layer (i) due to the currents in layer (j) can be expressed in the following form

where F(ksn,F ) is the kernel of the vector Fourier transform (VFT) given by [8]

=1 F kz On~ I e&.1 (8(k,,,) = [n -2 (8)

and Kj(kn) is the vector Fourier transform of the surface current Yj(f ). It is
given by

Kj(kan) J j(d, 4, ). Ij( ) (9)

The matrix ( ) is given by

w ee o( ) = (10)

whose elements for different i and j are given in Appendix A.
In the above, the transverse electric field expressions Es)I, (1, m i,j) satisfy

the boundary conditions at the dielectric interfaces of the layered medium. Apply-
ing the final boundary condition that the tangential electric field vanishes on the
conducting strips, we can get the following set of dual vector integral equations
for the currents on the metallic strips

C 0 n 0 + L0_ d k , F (k ' n , s) " , ( kn ) K ' (k ) = 0 , V s) E S (1 1 )

T,, F T (

C.
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on the crossing strips, and

E + j dk (kn,,.) . jj(1,n)"j(-ka-) = 0, . E Si (12)

" 0 (_ on the signal line.0 6 C ( The next step is to solve this coupled set of vector integral equations to find

C C C. the dispersion relation for the signal line in the presence of the crossing strips.

c (. C M. GALERKIN'S METHOD AND THE EIGENVALUE EQUATION

C 6 C ( The formulation up to this stage is exact. We now solve the set of vector integral
Q. 0 C. C equations (11) and (12) by using Galerkin's method. The unknown current distri-

butions on the crossing strips Yi(F.) and on the signal line K,(r.) are expanded
in terms of the appropriate vector basis functions as follows:

M R
K(z,v) = E E m,(z, V). An, (13)

m=1 v=1

K Q2Kj(z,y) = F T k(), .  q (14)
k=1 q=-Qi

where Ki(z, /) and Kj(z,y) are the surface currents on the crossing strips and

the signal line, respectively, $mr and Thei/09Y are the basis functions, Amr and
Bkq are the expansion coefficients.

Using (13) and (14), the vector Fourier transform (VFT) of the currents Ki(r.)
and Ki(i) are obtained as

M R

m=1 r=1
K Q2

K,(kan)= E = V(+)k9,n(k.,fl).kq (16)
k=1 q=-Qj

where

U(±)m,,nkz? 7r)2J d- F(kan,Ffa) *m~r(Z,Y) (7

and

1I2 C E -- V(+)kqn(k.,#) - (2)2 1  r .(kn, :FF.) "'k(z)e~'13e (18)

C 0 4 - Substituting (15) and (16) into (11) and (12), we obtain
iC e., uRoo

. . '-00

C. 

d 

."- 

'
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K Q2 00 -

u k=1 q=-Ql n--oo -00
(19)

for F, S, and

c6 C t c __d-"s-o (k"',")'(k.")' q(+)",,"( k3 ")"Am
13 C -c -. = 1 ,. = - -0

c aC K Q2 1  d kk00dkC, K(Ln Fa (k. _)-Wk
Ot. C a
C k=1 q=-Ql n 0)

.LOC. (20)

0 (- for Fr, E .

Multiplying (19) by qpy,(zy) and integrating over the support of KO( ,) for
u = 1,2,...,M and v = 1,2,...,R, we obtain

MR 00 -0 ... =

E Z_ ,f dkz U(-).,.(k.,)) . (k..).U(+),,,n(k.,6) A,.
m=1 r=n=--oo
K Q 2 0 0 0 0 : t+K EQ E d z U(_)U.,R(kz,) .j( aP.(+)q,1,k. =o

k=1 q-Qj n=-oo -0

(21)

Similarly, multiplying (20) by %F,(z)e- / O9Y and integrating over the support of
Kj(F,) for a = 1, 2,..., K and t = -Q,-.. -A-..., Q2, we obtain

M R oo00 =EE j o dk, V()tnTP3). - fi(kan) -U(+).,-,' ) Am,
"\m'.-1=r=l n=-oo

K Q2 0 =00 - -+E E E i -dkz V(_),,, (k.,). (k.n). -V(+)kgn(k.,). , = 0

k=l =-Q oo-00

(22)

Equations (21) and (22) constitute a system of (S + T) linear algebraic equations
- - with S =MR and T = K(Q + Q2 + 1), and may be written in matrix form as

._ N. = 0 (23a)

C whereczo~c rNII]Sxs [N12]SxT1
C" . . [N'x$ [-N(22]TT23b)

C 0and

[1 (23c)
;a IBkq]Txl
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Each clement of the submatrices of N is given by

[NII]uv,m. = Ld (_).,. ,#(k,/) -,(k.) .(+)m,.(k.,t)
i R-OO

(24a)

cC[N2u-'.k A_ _n . V(+)kq,,(k.,i)0O C l ,=-oo
C 6C C (24b)
ot Ci 

-00 T
C a C C [N2iI.t,mt= 0 dk, V(-) (k~

0tCI C =-oe
C CC (24c)

SOC ' 1N 0A]tk= dk. -,t~(k,P) Vj(+)kqi(kgn i)

(24d)

For nontrivial solution to exist, the determinant of the coefficient matrix of
(21) and (22) must be zero,

det [7N(w, 3)] = 0 (25)

This is the eigenvalue equation for the propagation constant '3 which describes
the dispersion relation of the loaded microstrip line in the multilayered anisotropic
medium.

The next step is to choose appropriate basis functions for the surface currents
Ki(F.) and Ki(F.) on the signal line and the crossing strips, respectively. The
expansion functions we use are

P [ Q z LL' (26)
=--XY P Y1~~t 1 7 ~w~ ~i~,j (62r 0 Qn(X, zi) o R,(O, )]

-' and

=kz P. kP(X~I) Q zWj)] (27)

where

1 2nira
Pn(Q, -t) = - sin - (28)

cn(, = C (29)

C , Rn(c,,)= -sin nr(a + -y/2) (30)
LO i C. 7 7

C . 4. wi and wj are the widths of the crossing strips and the signal line, respectively,
( ; and Li is the length of the crossing strips. When choosing the basis functions
C 6. 4 for the surface currents, it should be borne in mind that the current cannot have

Q:'
C 4
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a normal component to the strip edges. Futhermore, the edge condition for the
parallel component should be considered. By substituting (26) and (27) into (17)

* and (18), respectively, we can get

(±).,.(.,P = Yn(k., ,)
= (2,)3Ic [Y,(kz i) Y O(k ] (31)

[Yr(In~wi) 0S• 0 z(±),(Pn, Wi
'Ot-c
cc.i ( and
'-O [( "C V(±)kqn(kz)8) = (Pqu :Xk (k wj)Y 0:% 1 (32)

(C C ( (2r 3G Y(c:v)-C. (

O(Ca
O .C where
C

4nwr sin V
( i(-1)n 4 2 2 - a2,/2  (33)

Z )(a, = 2 7'r + + [e9[(n 1)7r - (34)

- o-(nw F a,') sin( __ ± !_ (35)

Equations (31) and (32) are then substituted into the determinantal equation (25)
for the calculation of the dispersion characteristics.

IV. NUMERICAL TREATMENT AND RESULTS

In this section, we present numerical results for open and closed three-layer struc-
tures with the crossing strips and the signal line embedded in two different layers
as shown in Figs. 2(a) and (b). In numerical calculation, the infinite series of
Floquet modes and the basis functions are truncated. The ranges of indices in
(24) are chosen as: -10 < n < 9, k-= 1,-1 :_ q 5 0,1 __ m< 3, r = 1,s
1, -1 < t < 0, 1 _< u < 3, and = 1. It can be seen that each element in the co-
efficient matrix can be reduced to a sum of TE and TM terms, a summation over
n Floquet modes, and an integral over kz. Due to the symmetrical properties of
the Green's function, the basis functions and the test functions, all the integrands
are found to be even functions of kz. So the integration path can be reduced to

an integral from 0 to oo. In numerical computation, the path of integration in the
C 0 ' complex kz plane is deformed to avoid the singularities on the real axis [9].

C 4, I In the following calculations, the parameters used for Fig. 2 are: d, = d2 = d3
C. 0 _ 0.2 m, p = 0.5 m, wi = W2 = 0.125 mm, Li = 1.7 mm, and Mj = j, = A0.

C 4. I Since the crossing strip length is much longer than the signal line width, the

0 " current near the crossing strip edges is relatively small so that the edge condition

- C I. in the basis functions can be neglected.

CC
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(b)

Figure 2. (a) Cross section of an open structure. (b) Cross section of a
closed structure.
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16 Figure 3 shows the dispersion characteristics of a dosed microstrip line loaded
with periodic crossing strips (Fig. 2(b)). The result shows that the first stopband
appears due to the coupling between the Floquet modes n = 0 and n = -1 of
the fundamental mode of the signal line. The upper and lower bounds of the
stopband is denoted by wu and WL, respectively. At higher frequencies, higher
order stopbands are encountered because of the interaction with the higher order
modes of the signal line. However, we concentrate only on the first stopband
which is in the region of practical interest.

C * C I In Fig. 4, the dispersion characteristics of an open and a shielded structure
0 C C are plotted in solid and dashed lines, respectively. It can be seen that both the

a 6 C I stopband position and width are close to those of each other. This is because theo ( C fields are mostly confined under the first layer where the coupling between signal
C a C I line and crossing strips takes place. So removing the top conducting plate does

o (. C not affect the stopband properties much in this case. This point is illustrated in
C a c Figs. 5(a) and (b) which shows the effect of changing d1 on the stopband position

S0 C. C and width, respectively. In the following, we are going to investigate the effect of
anisotropy in the second and the third layer of a closed structure. It is believed
that similar effects can be observed in an open structure.

The plot in Fig. 6 shows the effect of the anisotropy ratio (AR = E2/C2z) of
the second layer on the stopband position and the stopband width. The center
frequency of the stopband is not much affected by the anisotropy. However, the
stopband width is quite sensitive to it. The width increases with 1/AR. For fixed
c2, it corresponds to an increase of e2z, which enhances coupling between the
signal line and the crossing strips, resulting in the rise of stopband width. For
1/AR > 1, it is found in the dispersion diagram that a high order stopband starts
to merge with the first order stopband, resulting in a large stopband width. Fig. 6
is thus plotted up to that value only.

In Fig. 7, we investigate the effect of anisotropy in the third layer on the
stopband properties. As we have expected, the stopband width is not so sensitive
to the anisotropy in the third layer as it is in the second layer where coupling
occurs. The change of stopband position with the anisotropy is close to that in
the second layer. Both are due to the change of the dispersion characteristics of
the signal line which results in the lowering of the intersecting point of the Floquet
modes n = 0 and n = --1. A high order stopband is encountered for I/AR > 1.

Various combinations of substrate ma"-trials have been used to minimize the
stopband width for the closed structure (Fig. 2(b)). The results are summarized
in the following table:

Case layer 1 layer 2 layer 3 (kop/r)c A(kop/7r)
1 loco sapph. 10o 0.3093 5.93E-3
2 10e 0  1Eo 10o 0.3144 3.67E-3

C 0 C ( l Ioeo Eps-10 1oco 0.3061 3.40E-3
C , 4 2.3e0 loco loco 0.3194 0.80E-3

C 0 ( 5 2.3c0 loeo sapph. 0.3054 0.53E-3
C 4 6 eo 10 0  sapph. 0.3058 0.87E-3

CI
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Figure 3. The dispersion characteristics of a closed structure with el =
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t

where (kop/r)c is the normalized center frequency of the stopband and A(k 0p/w)
is the normalized stopband width.

The two types of anisotropic substrates considered are Epsilam-10 (c = 13e0,
Cz = 10.3co) and sapphire (e = 9.4c0 , ez = 11.6c0). Comparison shows that the
fifth case has the smallest stopband width. In fact, the stopband width is quite
sensitive to the separation of the crossing strips due to the resonance effect [6].
Once the periodicity p is fixed, the stopband width can be minimized by a proper

SC S ( C choice of substrate material.0 C _ (~
0 a C C V. CONCLUSIONSC) Cl 4

C a C 7C A dyadic Green's function formulation for the analysis of open and closed mi-
0 C 4 crostrip lines in the presence of periodic crossing strips in a stratified uniaxially

c a C anisotropic medium is presented. The dispersion characteristics for a three-layer

c 0 C C 4 structure is studied. Numerical results illustrate the relationship between the
stopband properties and the material parameters. The effect of anisotropy has
also been investigated. It is found that the crossing strip separation and the
anisotropy in the second layer are important factors affecting the stopband width.
To achieve small stopband width, careful choice of anisotropy must be made to
avoid the lowering of the high order stopband. It should also be noted that by the
proper choice of substrate materials, the stopband width can be much reduced for
fixed crossing strip separation.

APPENDIX A

Using the dyadic Green's function formulation [7], the elements of ,i(kn) can
be obtained as follows:

For i = j, where the source and observation points are in the same layer, we
have

f TEWIL 1 
f . ( - RTERTE 2ik3 S d- +(

(Al)
fTM = ( e).:,  1 k1 _ me2ik)dj.e ) 1 - RTM)

1 RTMR T

(A2)

-- -and for j > i, where the source is in layer (j) and observation point is in layer (i),

Co r ) C we have (I (h)E2i) )
C - 4 0 C fTE M /u._ i~ U,,j A "F ( I + "ETX T E 0(h)k h + RCE1 L 1 ETE TE 2k(h)d\ d

CE ( 3jZ -n llj e ' is
C(A3)

-GI (
0.

_ C0 r,-
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xTM
fTM = 1 ~ki ik~e~d- TM(_ ,2k)d

We i k 1 (-~ RTMe 2ik.j:)di) ~'1-.~)( ~eitE~

(A4)

where xTE and XTM are, respectively, the TE and TM upward transmission
coefficients from layer (j) to layer (i), given by

c@C1 +TE
0 -C xTE =xE 1 U(1+l),

uC,,C = Ll(m +1),M'e (ik ( )(A5)
( C (1 + 4iEe'"sdl)

" -U ( k(e)
O(C TM =TM k, (l+I)z ike+)1) d(+, 1 -R(l+ 1) L

c u c X m m U-l m e k(1+1 1) -j e~i e ik ~ (M )
_OC CI

-0 _. _ _for l (m - 2), (m - 3),..., O, and for l = (m - 1), we have

xTE (1 + 4mE) (A7)u(m-1),m= 1+TE -2ik(1 + ~ 1) (n-1)

xTM ki kmz (1- 49)U(m-1),m kz km 2ik ) d - )  (A8)
RTM e(m)z(1)

U(M-1)

and
k(h) = :- A2 k2 (A9)

j (AgFjx

kjz) = ,2- (AlO)

,k = E3/S (All)

Using the symmetrical properties of the dyadic Green's function in the layered
media, it can be shown that f = f , where a denotes TE or TM. In the above
equations, the superscripts (h) and (e) denote TE and TM fields, respectively.
Rl and RUl are, respectively, the Fresnel reflection coefficients at the lower and
upper boundaries of layer (1) and can be determined recursively by the following
relations

I 0 ('_ C = R(I)+ Rg(1 1 ) 2Ik+ 1i)edl+A
1C + Ra 2ik(*+,i+2 (A12)-C 1,"_ 1 + R? i~).Ra(+ )

1(C+1 n(i+i)'
0 |, where =,...,(n -1) and R n R t.

0~

C '-
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R 1 =+ 2ik,0, dj_ (A13)
1 + R (j_ 1) R u Q _) (l-'z

where 1 = 2,3,...,t and R2l = Ra0 . R 1( 1-_) and R,1+,) are the Fresnel reflection

C * c ( coefficients across the interface between layers (!) and (1 + 1).
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ELECTROMAGNETIC RADIATION FROM

A VLSI PACKAGE AND HEATSINK CONFIGURATION
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Department of Electrical Engineering and Computer Science
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Massuchusetts Institute of Technology
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Abstract Problem Configuration and Model

The electromagnetic radiation from a VLSI chip package The electromagnetic radiation properties of a heatsink and
and heatsink structure is analysed by means of the finite-dif- integrated circuit (IC) package configuration are analysed by
ference time-domain (FD-TD) method. The FD-TD algorithm means of suitable models. A typical htatsink/package config-
implemented incorporates a multi-zone gridding scheme to ac- uration of interest is shown in Figure 1. The heatsink may be
commodate fine grid cells in the vicinity of the heatsink and modeled as a perfectly conducting rectangulsar slab positioned
package cavity and sparse gridding in the remainder of the com- over a finite-size dielectric medium representing the chip pack-
putational domain. The issues pertaining to the effects of the age. The chip is supported in turn by a dielectric layer of infinite
heatsink in influencing the overall radiating capacity of the con- extent over an infinite ground plane which models the substrate
figuration are addressed. Analyses are facilitated by using sim- or printed wiring board (PWB) with (at least) one reference
plified heatsink models and by using dipole elements as sources layer. The electromagnetic sources used to model the active

of electromagnetic energy to model the VLSI chip. The po- chip include electric and magnetic dipoles of vertical and hor-

tential for enhancement of spurious emissions by the heatsink izontal orientation positioned on the package/substrate dielec-

structure is illustrated. For heatsinks of typical dimensions, tric interface. The resulting model of an electromagnetically-

resonance is possible within the low gigahertz frequency range. coupled slab structure is shown in Figure 2. The generation of

The potential exploitation of the heatsink as an emissions shield a model with reduced complexity for both source and heatsink

by appropriate implementation schemes is discussed and evalu- is to facilitate the interpretation of results based on underlying

ated. physics. The extension to more complex heatsink (e.g., finned)
and source models may be readily accomplished with the rect-
angular gridding scheme associated with the numerical solution

Introduction employed. With sufficiently fine grids, circular heatsinks may

The extension of regulatory electromagnetic emissions test also be adequately modeled. In addition, the models are modi-

limits to the gigahertz range of frequencies for high performance fied to to reflect alternate implementation schemes for emissions
computing equipment has necessitated caution in the design and suppression purposes in order to conduct quantitative analyses.comptin eqipmnt is ncesitaed auton i th deignand Field strengths and radiated pow .ers are computed for quanti-
implementation of components down to the VLSI chip package Fiels s and radiateowt
level for computing systems. At issue is the avoidance of poten- tative analysis and evaluation.
tially efficient radiators at the design and development phase.
The objective is to minimize the need for cost prohibitive cor-
rective measures commonly invoked in reaction to problems en-
countered in tests on assembled systems. MOUNTING SCREW

In this paper, the effects of a heatsink over a chip package HEATSINK

on the electromagnetic emissions characteristics of the chip and
package environment are addressed. Such an interest is justified
by the following reasons. First, the heatsink is typically metal-
lic and is in close proximity to a major energy source - the

chip. Also, the electrical dimensions of the structure are com-
parable to the wavelengths of concern. Finally, in light of the
ever-increasing power levels of high performance integrated cir- SuPPOkT FRAME

cuitry, the heatsink is an indispensable component of the VLSI c .cPRINTED WIRING BOARD

chip packaging configuration. The objectives are to identify and

quantify the effects of the heatsink on the radiating properties of SUPPORT ASSEMBLY

the package structure; to understand and exploit the radiation
mechanisms, and to evaluate viable heatsink implementation
schemes for minimizing the overall radiating capacity.

Figure 1. Cutaway view of a VLSI package/heatsink configu-
Current addres#: WAVETRACER, Acton, MA 01720. ration.

CH3044-5/91/0000-0393 S01.00 0 1991 IEEE 393
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heelsink (oducl n- slab) electric and magnetic fields. To achieve accurate results, the
cell sizes are taken to be a fraction of the smallest wavelength.

c cksg . o .. The time increment and the cell size are related by the stability
.. ..WO ..> ': criterion (2),

aowd W,%sn&

1
AtL <

C./(l/AZ) + (1/yP + (1/Az)2

Figure 2. Cross-sectional view of simplified package/heatsink
model. where c. is the speed of light in free space. Fields are set to be

zero initially everywhere to satisfy the causality condition con-
sistent with zero excitation for time less than zero. The bound-

Method of Solution ary conditions are continuity of tangential electric and magnetic

The method employed in the analysis is the finite-difference fields on material interfaces, vanishing tangential electric fields

time-domain (FD-TD) technique. It is based on the discretiza- on perfect conductors, and the absorbing boundary conditionson the boundary of the computational domain. The absorb-
tion of the electric and magnetic fields over rectangular grids ing boundary conditions f3] are used to limit the computational

together with the finite difference approximation of the spa- in b y simultin unbounded sc the miumais-

tial and temporal derivatives appearing in the differential form domain by simulating unbounded space. The ainimum dis-

of Maxwell's equations. The reasons for which the FD-TD tance to the absorbing boundary, i.e., computational boundary,

methodology was selected include the relative ease of imple- from the heatsink is determined by consideration of reflection

mentation for complicated geometries, the requirement of only error, computation time, and memory. For a given cell size, the

simple arithmetic operations in the solution process, and the reflection error decreases but the computation time increases

flexibility for time- and frequency-domain analyses. substantially with increasing distance to the boundary.

In the FD-TD technique, a computational domain is first
defined and divided into rectangular cells. Electric and mag-...............
netic fields are spatially discretized in a staggered manner [1]
as shown in" Figure 3. Electric fields are assigned to half-integer ."-.-...........................
(n + 1/2) time steps and magnetic fields are assigned to integer l,~(~k)

(n) time steps for the temporal discretization of fields. Next, "
hy~jUk) 0

the spatial and temporal derivatives of the two Maxwell's curl .

equations are approximated using center differences. Maxwell's
curl equations for a time- and frequency-invariant medium are:

V X = o E + er -. V x -J01 - *.k). .....

where f. is the free-space permittivity, 8.854 x 10-' F/m and ....................
I. is the free-space permeability, 47 x 10- ' H/r. In addition,
C, and p. are respectively the relative permittivity (dielectric
constant) and relative permeability of the medium; while e, Figure 3. Staggered rectangular grid on typical unit cell in
is the electric conductivity. Maxwell's divergence equations are computational domain.
ignored since the curl equations with appropriate boundary con-
ditions uniquely determine the solution. In rectilinear coordi-
nates, the curl equations are rewritten as: The size of the discretization cells should be reasonably
8H. H + 0E, E, 8E, 8H, small in order to model features of the heatsink and capture
8 a_ - W = PP correct field variations. On the other hand, since the heatsink

OH, OH. 8E, E, LE, OHY should not be too close to the computational boundary, the cell

8Z - z = O°E, + ot ' z a. -- °- " count is highest outside the heatsink when a small cell size is
on, 8H. 8E, aE, _E, OH. used. To avoid the excessive number of cells which would other-

1, X H, = 01, E. + 411o =B -- - wise be generated, a three-zone gridding scheme [4] is used (Fig-

Difference equations are derived from these six equations by ap- ure 4). The first zone contains the heatsink and dipole source;
plyingDcnterifferencin or eia plro theexpesstions rela it has the finest grid among the three zones. The second zoneplying center differencing. For example, the expression relating has the same height as the first and extends horizontally from
H,, to E, and E5 at time (n + 1/2)4t is given by: the heatsink to the outer boundary of the computational do-

E(.j+2,.) ,(.,j./) E(. .+ ) w d, main. The cell size of this zone has the same vertical dimension

AY Ax as those of the first zone; while the horizontal dimensions may
H.+I - be a few times larger than the first zone. The remainder of the
= ~ ,(i..&) - (i,j,k) computational domain belongs to the third zone. The horizon-

At tal dimensions of the cells are identical to those of the second
zone, and the vertical dimension of the cells may be a few times

The center difference ensures that the spatial and temporal dis- larger than the first or second zones. Fields at nodes on an in-

cretizations are of second order where errors are proportional terface between two zones are calculated via a combination of

to the square of the cell size and time increment. Finally, with parabolic curve fitting and linear interpolation. For exarmple, in

appropriate initial and boundary conditions, the solutions to Figure 5, the partial derivative of H, with respect to the ver-

the difference equations are obtained through explicit leapfrog tical direction z at position of E,( 4 ,,) at the nth time step is

time marching. This corresponds to alternating the avance of given by
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'
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-

+ AI ,',,,,_3) Figure 5. Node and field designations for multi-zone gridding
A(I +in vertical direction.

1-a

A(3 + a) $; ) range and for the typical dimensions considered. Both classes

4a 3 + 13a 2 - 9 A2 H I of sources may be found in VLSI package configurations - the

24(a + 1)(a +3) zX3  VED in the form of vias and pins and the HMD as vertically
stratified signal and return paths. Results and discussions will

Second order accuracy is therefore maintained everywhere. Al- focus on one or both of the VED, HMD sources. Unless stated
though the discretization scheme is second order everywhere, otherwise, the dimensions of the conducting slab are 4.8 cm

the proportionality constants for the discretization errors are square and 2.5 mm thick. Its lower surface is located 7.5 mm
different due to different cell sizes. Reasonable accuracy is main- above a lower ground or reference plane. In the results pre-
taned due to the fact that the spatial variation of the fields sented, the effects of the dielectric layers are not considered.
outside the first zone is relatively small and that all cell sizes The dipole sources are located at the nodes closest to the cen-
remain a fraction of the smallest wavelength. The size of the ter of the heatsink-ground plane cavity.
time step is primarily determined by the smallest grid size. For
simplicity, the variable time step implementation [5] is not used. Figure 6 compares the normalized radiated power of an

The fields beyond the computational domain are calculated HMD over a ground plane in the presence and absence of a

using Huygens' principle [6]. The post-processing of full time heatsink for a frequency range of 1 to 6.5 GOz. Normalization

domain information for the purpose of generating frequency do- is with respect to the total radiated power of an identical dipole

main data is expensive in storage and is inefficient. The fields in unbounded space. The resonant behavior around 2.4 and 5.5

are instead calculated at selected multiple frequencies. To ob- GHz in the presence of the heatsink is evident, with the first res-

tain multi-frequency data, the time waveforms of the dipole onance showing a significant enhancement of radiation over the

excitations are chosen to be modulated Gaussian pulses, i.e., case without the heatsink. This resonance feature is illustrated

- cos(W.(t - t)) exp[-((t - t.)/T)2 1, where w. is the center fre- in Figure 7 where the time response of the vertical E-field at

qucncy of the excitation, t. is the delay, and T determines the the indicated location on the periphery of the heatsink-ground

pulse-width. Complex amplitudes at each frequency are calcu- plane cavity is shown. The oscillations at the resonant frequency

lated simultaneously on a selected surface outside the first zone become increasingly evident after 700 time-steps. The quality

using the discrete Fourier transform. factor (Q) of the structure may also be deduced from the decay
rate and the resonant frequency. Figure 8 shows the surface
plots of the vertical electric field amplitudes over a horizontal

Results and Discussion plane that traverses the heatsink and ground plane cavity and

The basic model described in Figure 2 is analysed with spanning the computational domain at 4 different time steps.

the use of horizontal electric and magnetic dipoles and vertical Each plot is normalized to the maximum value for the respective

electric and magnetic dipoles as sources. The choice of such time step. The absence of any obvious reflected disturbances
elements circumvents the problem of deriving a rigorous model from the edges of the computational domain illustrates the ef-elemntscirumvets he robem o deivig arigoousmodl ficiency of the absorbing boundary condition. The sustained

for the VLSI circuitry as an electromagnetic source and elim- ency o e asorn boudar conditi e staine
inates factors which may otherwise clutter the understanding resonat mode pattern is evident after 1000 time steps

and interpretation of the physical processes associated with the Figure 9 shows the corresponding results over the frequency

spurious radiation study. Of these sources only the horizon- range of 1 to 8 GHz with a VED a the source. Again, substan-

tal magnetic dipole (HMD) and vertical electric dipole (VED) tial enhancement in radiated power in the presence of a heatsink

show radiation enhancement in the presence of the heatsink. occurs at the primary resonance of 4.8 GHz, and at the second

The frequency range considered does not exceed 10 0Hz. The resonance near 7 GHz. The symmetry and anti-symmetry of the

dominant horizontal (electric field) polarization generated by dipole source fields are responsible for the difference in excited

the other 2 sources remains below cutoff within this frequency resonances with the HMD and VED dipoles.
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Figure 6. Comparison of normalized total radiated power in Figure 7. Time response of vertical electric field at indicated
presence and absence of a heatsink with a HMD source. Source position on the boundary of heatsink and ground plane cav-
function cos(w(t - to)) exp-((t- o)T)'], where wo= 5r x ity for HMD source of Figure 6. Each time step corresponds
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n =250 n =650

n 1 100

n 1 000

Figure 8. Vertical electric field amplitude plots over horizontal
plane through heatsink/ground plane cavity for HMD source of
Figure 6. n is the number of time steps elapsed, and each time
step corresponds approximately to 2.2 picoseconds.
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30 Figure 11 shows the effects of the implementation of 4 a:

8 uniformly distributed posts on the radiated power. The dip(

-wit h",nk source is a HMD. The figure shows the typica effects of addi:
asposts - the shifting of resonant frequencies upwards which al

- - - WNh'hh" renders the resulting configuration to be of lower Q. In imp
menting such an option for emissions suppression, care has to I

a. taken to ensure that such shifts move the resonant frequenci
0 so beyond the range of test frequencies.

5

00

1 O i. = 4T = 0.8 n . Io mo

FREQUENCY (G.).

Figure 9. Comparison of normalized total radiated power in
presence and absence of heatsink with an VED source. Source w
function - ncos( em( - t b)) exp -((i - i.)/T) , where w h 5" x 0"

rationale.o for.- cosdrto"fsc ot sterdcini h

10s rad/s, t = 4T -- 0.8 ns. t _ s l gas

oI -

Although modeled so far as a suspended slab of conduct- 
ins material, thbeats may alsotbe supported by posts (e.g., " - -

s

Figure 1) which may or may not be connected to any other con- -......................

ducting paths. In Figure 10 we show the model of a heattiiik o ,EQUENCY (C s)

supported with 4 posts, of 4 m square crosssection, connected
to a reference or ground plane. We also investigate the effect of
increasing the number of the posts a a means of exploiting the Figure 11. Comparison of normalized total radiated powe
heatsink as an emissions shield through appropriate implemen- with fMD source for heatsink with 4 and 8 posts and withou
tation. This is particularly pertinent in light of the observation posts.
of radiation enhancement by the indispensable heatfink. The
rationale for consideration of such posts is the reduction in the
size of the wavelengths allowed to leak through the smaller gaps,
whose effectiveness is weakened by the interaction between the
resulting multiple gaps.

Another potential means of exploiting the heatsink fo-
emissions suppression is to employ a skirt of conducting mate

rial beneath and around the periphery of the heatsink, thereb
Sosts con n sa 3serving a a compLiant containment which would dissipate the

contined energy with its finite conductivity. Figure 12 show!

the model considered. The gaps in the gasket material are tc
facilitate lead passage. The simulation results, comparing radi-

paksgo and sourcl ation from a gasketed and ungasketed heatsink with an dMD

TPI as source, are shown in Figure 13 where a conductivity of 10TOP VIEWmhos/m, a dielectric constant of 4, and a thickness of approxi-

Fmately 7.5 mm are assumed for the gasket material. This con-
oductivity is conservative since typical bulk conductivitieS for

4 me ,- conductive gasket material are of the order of i0 mhos/m. De-
~spite the conservative estimate on the conductivity of a typi-

...... cal material, the improvement in emissions reduction near reso-
/ nance is substantial, although the lower Q that results may tend

m4l p1I olul slab 2 mmJ to raise emission levels at nearby frequencies. For reference, the
S WOE -- - size of the skin depth at 1 GHs for the conductivity assumed is

S EVIEW 47.5mm approximately 5 mun and will decrease as the square-root of the

~frequency. The frequency response indicat -s a slight downward
rseronca plans shift in the resonant frequency due to an f ectively denser di-

electric medium bjeneath the hestsink and a broader bandwidth
corresponding to a lowered Q due to added energy dissipation

Figure 10. Model for heataink with 4 support posts connected in the gasket material.
to reference plane.
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Conclusion

The FD-TD technique has been applied to the analyses of' ' l' t <.j.~*.- 1, the radiation from a VLSI heatsink and package configuration.

The technique was chosen for its flexibility in treating this class
of problems involving potentially complex configurations where

packag and source .... neither approximate nor analytical methods are practical. The

TOP VIEW 4.8 cm multi-zone gridding scheme implemented allowed a high grid
resolution in the vicinity of the heatsink without sacrificing over-
all cell number thereby allowing increased numerical efficiency
for low frequencies. Additional advantages of this discretization

.,-. scheme include improved geometrical and material modeling.
The analysis of the heatsink, a critical component within the

- - -computer packaging environment, illustrated the significance of
resonance due to appreciable electrical dimensions on the spu-

SIDE VIEW conducting slab 3 mm . rious electromagnetic radiation from the VLSI packaging envi-" - -ronment. Simulations with typical heatsinks dimensions showed
" _- h. __" ____ 7.5 mr the occurrence of resonance in the low gigahertz range. The ef-

efance plane __7 fects of the presence of a heatsink on the radiation properties
3cof dipole models have been explained and the features of res-onant behavior presented. The effectiveness and consequences

of exploiting practical heatsink implementation options such as
grounding and shielding to reduce electromagnetic emissions has

Figure 12. Model for heatsink with a conducting gasket. been discussed and quantified using the FD-TD numerical tech-
nique.
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Because the effects of diffraction during proximity-print x-ray

lithography are of critical importance, a number of previous
researchers have attempted to calculate the diffraction patterns and

minimum achievable feature sizes as a function of wavelength and
gap. Work to date has assumed that scalar diffraction theory is

applicable-as calculated, for example, by the Rayleigh-Sommerfeld

formulation-and that Kirchhoff boundary conditions can be applied.

Kirchhoff boundary conditions assume that the fields (amplitude and
phase) are constant in the open regions between absorbers, and a

different constant in regions just under the absorbers (i.e., that there are
no fringing fields). An x-ray absorber is, however, best described as a
lossy dielectric that is tens or hundreds of wavelengths tall, and hence

Kirchhoff boundary conditions are unsuitable. In this report we use

two numerical techniques to calculate (on a Cray 2 supercomputer)
accurate diff-acted fields from gold absorbers for two cases: a 30 nm-

wide line dt X = 4.5 nm, and a 100 nm-wide line at X = 1.3 nm. We

show that the use of Kirchhoff boundary conditions introduces
unphysically high spatial frequencies into the diffracted fields. The

suppression of these frequencies-which occurs naturally without the

need to introduce an extended source or broad spectrum-improves

exposure latitude for mask features near 0.1 ;Lm and below.
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I. INTRODUCTION

The limits and practicality of proximity-print x-ray lithography continues to
be a topic of discussion and debate. Of particular concern are the limits of

resolution imposed by the effects of diffraction. Because the mechanical
limits imposed on the mask-substrate gap during the volume manufacturing
of ULSI circuits are not presently certain, it remains prudent to ask: what is

the minimum practical feature size that can be printed at a given gap?

In order to resolve these issues, a series of papers have appeared in the
literature which present theoretical calculations for the diffraction of x rays

from mask absorbers. Early papers simply considered absorption [1-3], but
later papers also included the effects of phase-shift [4-8]. Most recently,

authors have included the effects of source spatial and temporal coherence,
and have generated exposure "trees" which allow the determination of

exposure latitude versus gap for various types of mask features [9-15].

The method most commonly used to calculate the diffraction pattern is to
apply a Fresnel-Kirchhoff or Rayleigh-Sommerfeld diffraction integral [16,17],

or a more sophisticated formulation (Hopkin's formula) which takes into
account source partial coherence [18]. These calculations can be carried out

either in the spatial or the spatial-frequency domain. In any of these cases,
approximate boundary conditions known as Kirchhoff boundary conditions

(KBC) are generally applied. KBC assume that the field (amplitude and phase)

is constant in the open regions between absorbers, and also constant (but
attenuated and phase shifted) in regions just under the absorbers-in other

words, that there are no fringing fields at the boundary between the two

regions.

In general, KBC apply when the wavelength, X, is much smaller than the
lateral size, d, of the feature being printed-which is the case in most x-ray

lithography (e.g., d = 0.1 gm, X = 1 nm). However, what is not generally

recognized is that KBC will not necessarily apply when the absorbers are lossy

dielectrics that are tens or hundreds of wavelengths tall.

Work to date concerning the printability of 0.25 gim features is probably
reasonably accurate. However, in this report we show that the assumption of

KBC for features near 0.1 gm and below is not tenable. In particular, we show
that the suppression of the undesirable high-spatial-frequency components-
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which some authors note an extended source and/or a broad spectrum

achieves--occurs naturally in the absorber due to the 'lossy dielectric" effect.

IL CALCULATIONS

We used two different methods to calculate the diffraction from gold

absorbers: the Method of Moments (MoM) and the Finite Difference-Time

Domain (FD-TD) method. (We used two algorithms in order to check for

consistency.) The only approximations inherent in these methods are in the

discretization of the object space and Maxwell's equations. Because the

discretization can performed on a scale that is small compared to the

wavelength, and furthermore the discretization scale can be reduced until

convergence is achieved, accuracy is assured.
Of these two techniques, the MoM is typically faster and uses less memory

for single-frequency calculations. On the other hand, the FD-TD method is

simpler to code and therefore less likely to have errors. In practice we ran

small test cases using both methods and then increased the spatial resolution

(reduced discretization scale) until both methods converged to the same

solution. Then the computationally-intensive cases reported here were

calculated with the MoM.

A. METHOD OF MOMENTS

The Method of Moments (MoM) is a numerical technique useful in the

solution of steady-state electromagnetic wave scattering and radiation

problems [19,20]. The method calculates steady-state fields on the surface of a

closed dielectric object in free space, which is impinged upon by a known

exciting wave. The surface of the object is broken up into small patches

which are small compared to the wavelength. The surface currents at each

patch and thus the tangential surface fields are then calculated. Computation

time was up to two hours on a Cray 2. Once the fields are known on the

boundary of the object they can readily be propagated to any desired point or

plane [16,171.
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B. FINITE DIFFERENCE-TIME DOMAIN METHOD

The Finite Difference-Time Domain (FD-TD) method is a numerical

technique useful in the solution of time-dependent electromagnetic wave

scattering and radiation problems [21-24]. The method involves the

formation of a computational domain which encompasses the object of

interest and is typically several times larger. The entire domain inside the

boundary-including the object-is discretized on a rectangular grid. The

spacing between adjacent nodes on the grid is small compared to the

wavelength. A clock is started and incremented in time steps that are small

compared to the light-travel time between adjacent nodes. Then discretized

forms of Maxwell's equations are used to calculate the fields at each node

from the fields at nearby nodes which were in effect at the previous time step.

Absorbing boundary conditions are imposed at the edges of the

computational domain in order to simulate unbounded space. Also, a

boundary condition is typically imposed on a surface surrounding the object

to simulate an incoming plane wave. The result can be displayed as a video

image of the fields inside the domain. Computation time was up to one hour

on a Cray 2. In practice the calculation is run until steady state is achieved,

and the fields at nodes along a line just under the absorber are saved for

comparison with the MoM results.

III. RESULTS

Calculations were performed using MoM and FD-TD on single gold

parallelepiped absorbers, infinite in length and rectangular in cross-section,

which were impinged upon by a monochromatic plane wave. The electric-

field polarization was used (E-field perpendicular to the page). (The

magnetic-field polarization yielded results similar to the electric-field

polarization.) These were compared to the results of a Rayleigh-Sommerfeld-

Kirchhoff (RSK) calculation [16]. We considered two cases (see Table I), which

were selected in order to explore a range of spatial frequencies: Case 1, which

is a 30x100 nm absorber with the 4.5 nm (CK) x ray, and Case 2, which is a

100x250 nm absorber with the 1.3 nm (CuL) x ray. Note that the attenuation of

the absorber in both cases is roughly equivalent. (-12 dB).
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A. CASE 1 (. = 4.5 nm)

Figs. 1 (a) to (d) show the resulting intensities or irradiance distributions

for both the MoM and RSK methods calculated for a from 0-1.5 (gap G from 0-

0.3 gm). Here a is a dimensionless gap given by ax = G2/W 2, where G is the

gap, X is the wavelength, and W is the linewidth. Note the suppression of

high spatial frequencies in the MoM calculation, and the "fuzzy edge" of a few

tens of nanometers in extent. Figs. 2 (a) and (b) show the beneficial effects of

the suppression of high spatial frequencies on exposure latitude in the form

of exposure "trees" [9-12] which plot ±10 % linewidth contours versus a. Here

we have used a line bias of 33 % (40 nm resist line). (A line bias is the use of a

smaller-than-desired feature size in the mask than on the wafer in order to

compensate for diffractive broadening.) An enlightening way to view the

suppression of high spatial frequencies is to plot the intensity of the waves at

a = 0 (gap G = 0) as a function of spatial frequency, as shown in Fig. 3. Note

that at low spatial frequencies the RSK and MoM calculations agree, but the

MoM calculation "rolls off" at around 0.05 nm-1.

B. CASE 2 ( = 1.3 nm)

The results for the intensities versus ax for Case 2 are shown in Figs. 4 (a) to

(d). Note that even though the wavelength is much smaller, the "fuzzy edge"

length is roughly the same-a few tens of nanometers. This may be due to

the smaller wavelength (3.3x smaller) being partially compensated by a taller

absorber (2.5x taller). The exposure trees are shown in Figs. 5 (a) and (b). Here

we have used a line bias of 50% (150 n-.n resist line). The intensity versus

spatial frequency is shown in Fig. 6. Note that the roll-off in this case is still

around 0.05 nm-1, but that this represents a higher spatial frequency relative

to the information content in the larger-line/smaller-wavelength case.

IV. CONCLUSION

We have shown that the use of Kirchhoff boundary conditions introduces

unphysically high spatial frequencies into the diffracted fields. The natural

suppression of these frequencies by the electromagnetic properties of x-ray
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absorbers tremendously improves exposure latitude for mask features near

0.1 pm and below.
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Figure Captions

FIG. 1. Intensity vs. lateral position for Case 1. (a) a = 0 (gap = 0), (b) a = 0.5

(gap = 0.1 gm), (c) a = 1.0 (gap = 0.2 prn), (d) a = 1.5 (gap = 0.3 In).

FIG. 2. Exposure trees vs. a (dimensionless gap) for Case 1. (Gaps range from

0-0.3 pm.) The line is biased 33% (40 nn resist line). (a) MoM

solution, (b) Rayleigh-Sommerfeld-Kirchhoff approximation.

FIG. 3 Intensity vs. spatial frequency for Case 1. Note roll-off at 0.05 nm-1 .

FIG. 4 Intensity vs. lateral position for Case 2. (a) a = 0 (gap = 0), (b) a = 0.5

(gap = 3.7 pm), (c) a = 1.0 (gap = 7.5 gm), (d) a = 1.5 (gap = 11.2 pm).
FIG. 5 Exposure trees vs. a (dimensionless gap) for Case 2. (Gaps range from

0-11.2 pm.) The line is biased 50% (150 nn resist line). (a) MoM

solution, (b) Rayleigh-Sommerfeld-Kirchhoff approximation.

FIG. 6 Intensity vs. spatial frequency for Case 2. Note roll-off at 0.05 nm-1 .
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TABLE I. Computational cases considered.

Case 1 Case 2
Wavelength X (nm) 4.48 1.334
Refractive Index [25] 1 - 7.54x10-3 + jl.04x10-2 1 - 2.31x10-3 + jl.19x10-3

Width W (nm) 30 100
Height (nm) 100 250
Transmission 0.0541 0.0607

Phase Shift (rad) 1.058 2.72
Patch Size (nm) -0.64 -0.19
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3.1 Introduction

For microwave integrated circuit applications, the characteristics of
interconnects have been investigated for propagation modes [1,2], time
response [3], crosstalk [4], coupling [5], delay [6], etc. In these analyses,
it is assumed that quasi-TEM modes are guided along the multicon-
ductor transmission line. In [1), the analysis was performed for two
asymmetric transmission lines. In [2] and [3], an arbitrary number of
transmission lines were analyzed. In [3], the load and the source condi-
tions were presented in terms of the modal reflection and transmission
coefficient matrices.

To perform the quasi-TEM analysis, the capacitance matrix for
the multiconductor transmission line has to be obtained first. Both
the spectral and the spatial domain methods have been proposed to

-85 -



86 S. Modelling of Lossy Microstrip Lines

sinpl 0
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:Figure 3.1 Geometrical configuration of M rnicrostrlp lines with finite
thickness embedded in arbitrary layers of an isotropic stratified medium.

calculate the capacitance matrix. In the spectral domain methods, two
4i side walls are used to enclose the whole transmission line structure,

'N and the thickness of the strip lines has not been considered [7,8]. In
using the spatial domain method [9], the structure has to be truncatedto a finite extent to make the numerical implementation feasible. In

i (101, the infinite extent of the structure was incorporated, but only a

Stwo-layer medium was considered.
~In practical microwave integrated circuits, the dielectric loss due

• to the substrate and the conductor loss due to the metallic strips have
:. been studied in the analysis of circuit performances[1-13].

+-:In this chapter, we present a quasi-TEM analysis of coupled lossy I
microstrip lines of finite strip thickness embedded in different layers
of a iossy isotropic stratified medium as shown in Fig. 3.1. First, a
spectral domain scalar Green's function in a lossy isotropic stratified
medium is derived. In the formulation, no side walls are introduced,
the transmission structure is not truncated, and the analysis is valid
for arbitrary number of dielectric layers.

Kcip
to~

h i i

c.: "ui Al 6 ",

. . . . . . = " -"



3.2 Integral Equation Formulation 87

Based on the scalar Green's function, a set of coupled integral
equations is obtained for the charge distribution on the strip surfaces.
The method of moments is then applied where pulse basis functions
and a point-matching scheme is used to solve numerically the set of
integral equations for the charge distribution, and hence the capaci-
tance matrix. The duality between the electrostatic formulation and
the magnetostatic one is applied to calculate the inductance matrix.
The conductance matrix is obtained by using the duality between the
electrostatic problem and the current field problem. A perturbation
method is used to calculate the resistance matrix.

Finally, a transmission line analysis is derived to obtain the trans-
fer matrix for multiconductor line, which significantly reduces the effort
in treating the load and the source conditions. Transient responses are

fji obtained by using the Fourier transform. The results for two coupled
lines are presented. f

3.2 Integral Equation Formulation

[ We first formulate the scalar Green's function in the spectral do-
main in a homogeneous medium of permittivity e with a ground plane
located at z = 0. Thus, we consider a uniform line charge of unit am-
plitude to be located at (z', z') along the y direction, and evaluate
the electrostatic potential at (Z, z).

The scalar Green's function g(F,F') is the solution of the following
Poisson equation

where V2 - L2/O 2 + a2 /Lz 2 , ix + 1z, and F' = z' + iz'. The
scalar Green's function can be expressed in the spectral domain as

J J dkzdk,,ekz+ikz"(ka) (2)

where k. ik. + ik, and . is the Fourier transform of g(j,F')
with respect to: and z. Substituting (2) into (1), and using the image

* theory, we get

1 - e -il. Z'+ k. 2] (3)
= r + -k. +

i [.] ;) ":
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Zi Z( 0kg Z

ckxz Ikiz kj z

Figure 3.2 Definition of the local reflection and transmission coefficients
at a dielectric interface between media (1) and (I - 1).

The second term is the Fourier transform of the Green's function due
* to the image line charge at F~' =i - iz' which is the image of V'

with respect to the ground plane at z = 0. The scalar Green's function
can then be written as

g JJ 0 dkdkleik.(zz)ek-z") - ek(~' 4
a 0 4r c(k + k2)

By contour integration in the complex k, plane, we have

= k _ e kjj-' -k I(z+z')] (5)d00 47rcjk 2I e' I

The integrand is regular at k., 0, and the integration is well defined
as 7 goes to infinity.

Next, we introduce local reflection and transmission coefficients
at a boundary between two dielectrics. Consider a dielectric interface
between media (1) and (I - 1) as shown in Fig. 3.2. We assume that

* ~..the spectral domain potential in each region can be expressed as

Sk.) =Tek., k s + RL(l...)e 1k- I'll (6a)

*. ,



.~,. .

3.2 Integral Equation Formulation 89

// ~Z= -dl- :.
Rul

z =-di

Figure 3.3 Definition of the global reflection coefficients at the upper
boundaries of dielectric layers (1) and (I - 1).

eik.

€1- (r z "-- TI(I-1) e - 
kI - b),;

where z = z1= z + d 1 , Ri(I-1 ) and TI(I-1) are constants to be
determined. The z component of the electric field in each region can
be obtained as

E,.(F, k.) =et k-  [e- Ik., - R,(,_x)eIk .I'] (7a)

E(I - ). (F k.) = TI(I- 1): e' -k 1(b

By imposing the boundary conditions that the potential and the nor-
mal component of the electric flux density are continuous at z =

-ai-1, we obtain

el - el-1 (8a) .
T(x = EL t +(EL)..j

2e"

el + el...

where RI(I-1 ) and TL(-) can be interpreted as local reflection and
transmission coefficients, respectively.

Next, consider the two source-free layers (I) and (I - 1 ) of the
stratified medium as shown in Fig. 3.3, where the potential and the z



10 3. Modellng of Lossy Microstrip Lines

component of the electric field in each layer can be expressed as

Oi(Tk.) =je 1k.ikz Bj elk.-i] (9a)

Ej T k.) = '-z[Ae- kz + jjkj (9b)

where zj = z + d, and j = 1, t - 1 . We introduce the global re-
flection coefficient R~ defined at the upper boundary of layer (j),

codiios tz - 1 . 1 Ru1  Ai Ae- k. lhi (10)

where h, is the thickness of layer (j). By imposing the boundary
condtios a z =-djj ,we obtain the following recursive relation

Ru =_ R1 1 ...i) + RuCI...)e-2 j1 kjht1 I = 2,. , N (11)
1 + RI(1 1j)Ru(l..1 )e-2Ikthj1

and Rul = RIO. Similarly, the global reflection coefficient Rrnj Is
defined at the lower boundary of layer (j), z =-d 1 , as

- A, (12)

By imposing the boundary condition at z =-d 1 , we obtain

Rn Rp(+1) + Rn(I+l)e-2Ik.lh~ NI 1 --+i (3
RL=1 + R1(L+I)Rr,(j+I)e-2 lk h1+1 N-1-.,0 (3

and Rn = -1.-
With the use of the above reflection coefficients, the expression of

the scalar Green's function in a layered medium can be obtained in a
simple way. For the case where both the line charge and the observation
point are located in the upper half-space, that is layer (0), we have

goo OF, f 4irE0 I k

e.z z, + Rnoelk I.(" +z,) (14)

N4~
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where zo = z+ do, zo z' + do, the uniform line charge of unit
amplitude is located at V~ = (x', z,) , and the observation point is
located at F = (z, zo) . The first term inside the brackets is the direct
term, and the second term can be interpreted as due to the reflection
from the lower boundary at z = -do.

For the case when both the line charge and the observation point
are both located in an arbitrary layer (1) with 1 54 0, the Green's
function can be expressed as

oo eik. (2zz)

91 ( )~~ dke h

[ek1zz + A(ke-1k 1z1 + B(k,)eilI (15)

where z z + di, z'z'+ dl, A(k.) and B(k2,) are the uniknowns
to be determ-ined. From the deffinition of Rul and Rn1 , we have

Rut ek(z + A(k,)e-k-za} B(k,)e k zl =L hi (16a)

Rn e I~~z-z)+=~,ek1' A(k:,)e-1k- zi = 0 (166)

By solving (16), we get

Rr~ e - 1,1+ Rul Rn.le Ile I(2hi - zl)
A(k.) - u~i 2 kh (17a)

Rule-Ik. 1(2h -z;) + RulRnie-1k I(2hj+z)
B(k,) = u~i 2 1k. jha (17b)

Substituting (17) into (15), we obtain the explicit form of the
Green's function 9u(0,f') in the layer (1) as

00 ik.(~
dk3 fa 1k.1~ .Izz; 1 -RuiRnie-

2 k~jhI

[Rue-~jTza.-; + Rrnle- k- 1(21+2;)

+ R~R2 1 LIk (z -. +2h,) + u ~1k. (-z+z,+2hi)]}(8
+ u.2e +Rlne
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(0) (0)

• -d,.._(1) z=-d,

(N) (N)

Figure 3.4 Determination of the scalar Green's function where the source
is in a layer (in) and the observation point is in the layer (1). (a) Layer

(1) is above layer (m). (b) Layer (1) Is below layer (m).

The first term inside the brace is the direct term, the other terms
are the summation of the multiple reflections between the two bound-
aries at z = -dt-j and z = -d. It is observed that (14) is a special

7" , ": Icase of (18) with I = 0 and Rut = 0.
- -Next, we consider the case when the source and the observation

points are in different layers. As shown in Fig. 3.4(a), the source is
in a layer (in) and the observation point is in a layer (1) which is
above layer (m). We assume that each spectral field component is
transmitted upward from the source layer (m) to the layer (1) with
the upward transmission coefficient Xu,,. The Green's function can
thus be expressed as

glm.(F>,) if dkz xul -jkkjz' + uel

_( k.I 1 ,, [I

eIk.Iz + Rn,e-lk.l(2h-.+')

1 - RuRn..e-21k-I
h- (1

.*. ,
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where zj and z'~ are the local coordinates defined as zj z + di and

Z.1 z + din...-, respectively. Similarly, when the observation point is
located in the layer (1 + 1), we have

gy+ ~ 1), fFi' k e'kz'

[e~k.I1k.1

elkjz- + Rne-k. (2 h-+z:) 20

I1 RuRnme-2 lkPj 20

where z 1 1 z + d1+1 . Imposing the boundary conditions at the in-
terface z = - ,we get

XUIin -k.Ijh,, 1+ Ru(l+I)
XU(L~l)~e1 + Ruie-lk-lh

(21)
and forlI m - 1we have

XU(MIn.),m =1 (22)

!r For the case when the layer (in) is above layer (1) as shown in
Fig. 3.4(b), the Green's function may be expressed as

g~~0 eIk (X-C')I f _____

1k21 Rnek(2h+zj)j
2iwm<,> -- .1 j dk3  m[euI + Rje

e ~kIz,.+ ~(23)
1RumRnme-2 k~hmI where Xrg,mn is the downward transmission coefficient, zj and z' are

the local coordinates defined as zi = z + di-I and z'~ = z' + d, ,
respectively. Similarly, when the observation point is located in the
layer (Il-1),we have

= ~~-L dkz Xn(i-l),rn
41re.. Ik~I

[eP~..i+ R,(l..l~~k (2hi~i+zaj)]
erk.Izl- + rjje-k

1 - (24)
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where zI- = z + dI-2 • Imposing the boundary conditions at the in-
terface z = -dI-1, we have

Xl.m = X(t),me_ Ik~htI 1 + Rn(i-i) I = m + 2,.-.,N
1 + Rnie-

2lk~lht

(25)
and for I = m + 1, we have

Xn(m+l).m 1+ 1+)Rnm (26)
1+Rfl(m+)c 21k1h+1

Next, consider M microstrip lines embedded in arbitrary layers of
an isotropic stratified medium as shown in Fig. 3.1. All the conductor
strips are of finite thickness, the permittivity of layer (j) is ej , and a
ground plane is put at z = -dN as the potential reference.

Using the scalar Green's function, the potential in layer (1) can
be represented as

M

V,(F) = dI glL(p)(; , r')pp() (27)

where rp is the cross section contour of the p th microstrip line, pp(r)
is the charge density on the pth rnicrostrip surface, L(p) is the layer
where the p th microstrip line is embedded. The cross section of the
microstrip lines can be arbitrary in general. For practical applications,
only the rectangular cross sections are considered.

The potential distribution in (27) satisfies all the boundary condi-
tions that the potential and the normal electric flux density are con-
tinuous across the interfaces between adjacent dielectric layers. To ob-
tain the charge distribution on each microstrip surface, we impose the
boundary condition that the potential on each microstrip is equal to
the impressed voltage. Thus we have

M

eZ d'gL(q)(p)(F,)pp(r) = Vq, F on r. (28)

where q=I,...,M.
In the next section, the method of moments is applied to solve (28)

for the charge distributions.

, o ,,t-o.
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3.3 Numerical Solution of Charge Distribution

By applying the method of moments to solve (28), we first choose

a set of pulse basis functions for the surface charge density, hence --

Np

pp!') i Pp (= 1,...,M (29)

where api and Ppi(F') are, respectively, the expansion coefficients and

the basis functions on the i th section of the p th inicrostrip surface;

and Np is the total number of basis functions on the p th microstrip

surface. The pulse function is defined as
i {1, F on rp i

vonr) = (30)Pp 0, elsewhere 0

where r,, is the ith section on the p th nicrostrip surface.

Substituting (29) into (28), we have

M N,

E api fr dgcL(q)L(p)(,i)Ppi(') Vq, f onq (31)

where q = I,---,M. 
4

Next, we choose the center point at each pulse basis as the testing

point to test (31), thus we have

M N,

Zqjp.iapi =qj, 1 q f- M, 1 < N (32)
p=l i=1

where
Fr

]r, d dergL(q)L(p)(rqj,r )Pi(r) (33)

0j =Vq (34)

and Fqj = (zqj,zqj) is the center coordinate of rqj. By solving (32)

for api 's, the charge density can be obtained.

The capacitance matrix of M microstrip lines can be obtained :0.

by solving (28) M times. For the n th time, all the microstrip lines are

.
iZ
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grounded except that one volt is imposed on the n th line. By solving
(32), the charge distribution is obtained. The total surface charge per
unit length on the m th microstrip line is equal to the mn th element of
the capacitance matrix, C,,, . This can be observed from the definition
of the capacitance matrix

M

Z CqpVp Qq, 1 < q < M (35)
p=1

By setting V = p., we have Q ") = Cq, with 1 < q _< M. Here,

6p,, is the Kronecker's delta function and the superscript (n) in Q9fl)
is the index of the microstrip where one volt is imposed.

3.4 Magnetostatic Dual Problem

In this section, we briefly review the magnetostatic dual problem.
For nonmagnetic materials, the magnetostatic problem for the geomet-
rical configuration shown in Fig. 3.1 is equivalent to the one where all
the dielectric media are replaced by the free space. The magnetostatic
potential ik(F) due to a uniform line current at T' can be derived in
a way similar to that in Section 2 as

M
ds gL(q)L1)Jr)Jp(r ) = q, r on rq (36)

where q = 1,--.,M; g ) is the scalar Green's function;

.V o Jp(f') is the surface current on the p th microstrip surface; and 0q is

the magnetostatic potential measured on the q th microstrip surface
with respect to the ground plane, which is equal to the magnetic flux
linkage between the q th microstrip line and the ground plane per unit
length.

Instead of solving (36) directly, a dual electrostatic problem for
the same geometrical configuration in free space is solved. It can be
shown that

M p,) gE(;,;) (37)

where gE(,V,) is the scalar Green's function derived in Section 2 with
all el 's replaced by the dielectric constant in the free space.

:' . .. '.
VI
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Imposing the same boundary conditions that Vq O q for 1 < q :5

M, we have

()) p1 < p,k < M (38)

where p(h)(F) is the surface charge distribution on the p th rricrostrip
surface when we impose one volt on the k th strip, and zero volt on

the other strips; Ak)(T) is the surface current distribution on the p th
microstrip surface when we impose one tesla-m on the k th strip, and
zero tesla-m on the other strips.

In general, the surface current on the p th rmicrostrip surface can
be expressed as

p(F)= Z Jc)(F)= 4k4.(7) (39)
P oco -

Integrating (39) over one unit length on the pth mricrostrip surface,
we have

1r 1 oP' M (40)
/loco k=

where Ip is the surface current on the p th microstrip line, and Co~pk is

the pk th element of the capacitance matrix Co with all the dielectrics

replaced by free space. Hence, we obtain the conventional result that

the inductance matrix L is proportional to the inverse of the capaci-
tance matrix in free space as

L ;iocoz~ (41)

3.5 Calculation of and A

In this section, the dielectric loss and conductor loss are considered.

The transmission line equations for M coupled inicrostrip lines are

- F5 j -.V (42a)

49 Y-rR -wj -(42b)



98 S. Modelling of Lossy Microstrip Lines

where the conductance matrix G accounts for the dielectric loss, and
the resistance matrix R~ accounts for the conductor loss.

The n th eigen solution to (42) can be represented as

Y = Yn-YV(43a)

V = v,,e',Yt (43b)

where -y is the eigenvalue of the ni th mode; and 7n. and V,. are the
corresponding eigenvectors. Substituting (43) into (42), we have

'Y,n [G - iWJ Vn (44a)

7Vn r iJ I Yn (44b)

and hence

7n~n rG iW rR WJ Yn(45a)

There are in general M eigen solutions to the above equations. The
eigenvalues solved from (45a) and (45b) are the same; and the eigen-
vectors 7,. 's and V,. 'S are related by (44).

For the n th eigenmode, the time-average Poynting's power P,,T
can be represented as

PT ReI~.n (46)
2 i i

*where In. is the transposed, complex conjugate of 7n,. The time-
average power loss per unit length P,.L along the transmission lines
can be calculated as

P,.L =P,,c + P,.D =
2 anTPT (7

where

P,.C=(1/2)1. ,R - In 2fCPT (48a)

P*, (12v".G '.,2tna 4b
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where P,.c and PnD are the time-average conductor loss and dielec-
tric loss per unit length, respectively; anT, 0 nC, and anD are the A
corresponding attenuation constants for the n th mode.

To calculate the conductance matrix which accounts for the dielec-
tric loss, we make use of the duality between the electrostatic problem

and the current field problem. Assume that the geometrical configu-
ration of the current field problem is the same as in Fig. 3.1, and the
conductivity in layer (1) is designated by a, with 0 < I < N. If the
conductivities in the current field problem and the dielectric constants
in the electrostatic problem satisfy the following relation

o0  __ 1  UN ( 9
N (49)

then, we have

(50)

The perturbation method is used to solve for the attenuation con-

stants anc and the resistance matrix R We start from the lossless 7
eigenvalue equations:

C.L Yon 1,

L.C Vo. = Vo (51)

where Yn = -i/n,; Vn = W/n is the phase velocity for the n th mode;

and C is the capacitance matrix with all materials lossfree. The time-
average guided power can be approximated by the power guided along
lossless lines as

PnT sRe 2P - Vo.] (52)

The power loss per unit length of the n th mode due to imperfect
conductor can be calculated by using the surface current obtained for
the perfect conductor lines. Thus, we have

PC RkS~ IJ(!)l' dr (53)
wee i ce k=

where RjS is the surface resistance per unit area on the k th mi-
crostrip surface, Jku(f) is the surface current distribution of the n th .,
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mode on the k th microstrip surface. Here M' is the total number of

conductors including the ground planes. As defined in (29), p()(T) can

be expanded in terms of the pulse basis functions as
S N,

vi)() = Z k,. (;) (54)

M=1

where Pk,(F) is the basis function defined in (30). By using (39), the
surface current on the k th microstrip surface can be represented as

M N&

J1, (j;) = E. a(' Ph,= . (T) (55)
POOi=1 M=1

where ibi is obtained by solving

M

= LjIonj (56)
-41

where Li is the ij th element of the inductance matrix L Io,*,j is
the j th element of the eigenvector IOn. The conductor loss can then
be calculated as

M N1, M 12., .- 2 ,Wo =p "(f1 d-r(o~)- + .,.o,
.= Zs-2Zb ' IPm()t 2 d'+Pa

k =1 M=1 i=1 m

PV .,(57)

where PC is the conductor loss due to the ground planes. To calculate
PG, we first solve for the magnetic field H. as

MM.N

k=1lm=1 i~=1

dke,._.[ oI8(k 3 ,,,')

(58)

where E(k.,z,z') is the Fourier transform with respect to z of
gE(wF) as defined in (37). Thus, we have

M NIL M N, M FM
PG=2rRsZ z OiaI I Ok W

k=1 m=1 k=1 m=1 i --- i=

-'rV

-.- , ~ ~ 7
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~ o

0§1e5-(k.,ZG,z*)1 1 O§E(k, ZG, Z") (9

where RS is the surface resistance per un-it area of the ground planes,
ZG is the z coordinate of the ground planes.

Now, set G 0 in (45b), we have

@onc -I3) 2 V.= [R - iL [iWF] -Vn (60)

j Making the approximation that O3n 1': /3on Vn, : Von , and utilizing
the relation (44) with G = 0, the imaginary part of (60) becomes

M

=0n Vr ZRkIon,k, 1< n m < M (61)
k=1

where IOn,?, is the k th element of Yon; and Von,, is the m th element

of Von. The elements of R can be obtained by solving (61).

After obtaining the matrices C , L, Z7, and 1R; the matrix equa-
tions (44) and (45) can be solved for the eigenvalues and eigenvectors.

3.6 Transmission Line Analysis j

The voltage and current along the transmission lines can be rep-
resented in terms of the eigenvectors obtained in the last section as

M M

V(y) = E nv~ ~b,,c"

=Sv -A()-A+ v - (-y) - (62a) i
M M

Sr-Ay X-)-- (62b)
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whr S= i h arxwt h ievco , sisnt oun

whre is the matrix with the eigenvector as its ith column;an

Bare the mode coefficient vectors in the forward and backward direc-
tions, respectively; A(y) is a diagonal matrix with exp(-'nY) as its
ni th element; namely,

*=(a,,a2,...,am) T  (63a)

B = (bl, b2 ,...,bM) T  (63b)

X(y) = diag. {e11Y', e-21y, -. ,e-"Y} (63c)

where the superscript T represents the transpose of a row vector.
The characteristic impedance matrix can be defined as

ZC =SV -S' (64)

From (62), the mode coefficients X and P can be represented in
terms of the line voltages V(o) and line currents 7(o) as

1 L Vv' . + =) .7(0)](6a

- 1 O) (65b)

Next, the line voltages V(I)_ and the line currents 7(l) can be
expressed in terms of V(0) and Y(0) through (65) as

V(L Avv (1) Avr(Il ~ )V0
i-Ir ~ 4i~AM (66)

where A7([) is called the transfer matrix for the uniform transmission

lines of length 1; and the explicit form of the submatrices of-X.(I) are

A.vv(l) = Sv - [Adl) + AC-I)] V (67a)

Av(l) = ~ - rA(l) - =A(-I)] 7(67c)

Auj(l) 3V [A(l) + A(-I)] Tr (67d)
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If more than one transmission line section with different characteristics
are cascaded, the transfer matrix of each section is multiplied to obtain
the overall transfer matrix.

hmposing a voltage source VS in series with an impedance matrix

TZS at V = 0, and imposing a voltage source VL in series with an

impedance matrix ZL at y = L, we have

V(O = V s - (O) (68a)

V(1) = VL + ZL .7Y(1) (686) -

The line voltages at all ports can thus be calculated as

I AvI(l) - AIS AV(1)

K Air(l).-Y - A= VO

=Vr(l) 'Z VS (69)

1.A~r(0) ZS *Vs+ZL *VLJ

The transient response can be obtained by using Fourier transform.
For the case of a single inicrostrip line, we first solve for the ca-

pacitance and the inductance per unit length C and L, respectively.
Next, solving the eigelivalue equations in the lossless medium, we have

7y2 = _P 2 = W -wLC (70a)

JO = 1 (70 b)

V. = f /C(70c)

The magnetic flux linkage is 4P = LI0 = L, the time-average power
i s PT= (1/2)y'7 7C; and the conductor loss per unit length can be
calculated by (57) and (59), hence we have ac = PC/2PT. Using
(61), we have R = 2ocVLIC. The conductance per unit length can
be calculated by using (50). With L, C, R?, and G, the eigenvalue
and the eigenvector can be solved from (44) and (45) as

7 (C - -iwC)(R - iwL) (71a)

1=1 (71 b)

FR - iwL
V ZCI = -:C(71 c)

V -iw
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The transfer- matrix zAi(l) for a transmission line of length I can be
obtained from (67) as

r cosh -11 - Zcsinh -yl

71 [-Zjl sinh -ft cosh-yl (72

V For the case of two symmetric microstrip lines, we first solve the
eigenvalue equations in the lossless medium for the even and the odd
modes, respectively. Thus we have

7. p1= _W2 (LIi + L12)(C11 + 0 12) (73a)

7e0 [:]C11L + £12 1 - 1 + £12 1. (73b)

0~ 0_= _= , ( - L 12 )(C 1 1  C 12 ) (73c)

[iVC11-C12 -1] C12__

(73d)

The magnetic flux linkage and the time-average power can be calcu-
lated as

= Oo=(u i)g (74a)
YoT (L- + +12 £0

ILI, + L12  '74b)

L - o = LI, L12 Y.0(74c)

PoT - - L12
- (74d)

The conductor loss per unit length can be obtained by using (57)
and (59), thus we have

~cC = P.C/2P.T, avC= PoC/2PoT (75)

The resistance matrix can be solved from (61) as

= eC LI1 + L12 L11 - L12
a.CV 1I + C1 2 + aoc VC11 - 12(76a)

4$4
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as

-Y= (Yii + Y12)(Zll + Z12) (77a)

-Y. = l (Y~'- 1 2 )(ZlI Z 12) (77c)

'0 ~ V 0 = 0  (77d)

where

Z 11 + Y2 -1 (78
11+/2 ll Y 112

yll = Gil - iwC 1  Y/12 = G 12 - W1

z = Rl- iwL1 , Z12 = R12 - iwLl 2. (79)

The characteristic impedance matrix can be obtained from (64) as

- - ~ Z. + 0)/2(Z. - Z.)/2]
=C SV -S, (80)

[(Ze ZO)/2 (Z, + Z,,)/2J

The transfer matrix of length I can be calculated from (67) as

Avv~) ! cosh-yI+ cosh-y0 l cosh-Ye - coshhl (81a

2 cosh-yl-cosh-y. coshyel,+cosh-ylJ

-Zsinh 7,1I- Z. sinh -y.1 - Zsinh -yl + Z. sinhy0 l

-Z, sinh -y~l + Z. sinh -y.1 - Z, sinh -y~l - Z,,sinh -t,0 l

ION~4/~
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z; :sih - z. -'sinh7(l -Z " sinh-ye1+Zd- sinhol]

-Z ': sinh-f/1+ Z.sinhi'0 1 -Z,* sinh-j'I -Z.- sinh-ol
(81c)

c o sh -h, e + c sh Z o sh -y - c sh o 1

A1 1 ) =~ (81d)AH(I) 2 coshTJ - cosh-,yo1 cosh-y + cosh-o/J (8 d

In the next section, we demonstrate how the transfer matrix is applied
to solve the coupled transmission line problems.

3.7 Results and Discussions

First, we check the results of our method in calculating the capac-
itance matrix using the spectral domain Green's function and compare
it with other methods using the spatial domain Green's function. In
Tables 3.1 to 3.4, we present the results of capacitance mtrix for differ-
ent microstrip line configurations. In Table 3.1, the difference between
our results and those in (9] is about 1% for the self-capacitance, and
is about 0.03% for the mutual capacitance. The difference from those
in [10] is about 0.1% for the self-capacitance, and about 1% for the

SLz mutual capacitance.
In Table 3.2, the difference between our results and those in [9] is

less than 0.7% for the self-capacitance, and is less than 4% for the
5 mutual capacitance. The difference between our results and those in

[101 is about 0.01% for the self-capacitance, and is less than 0.4% for
* . , the mutual capacitance.

The capacitance matrix for two microstrip lines embedded in the
same and different layers of a two-layered medium are presented in
Tables 3.3 and 4, respectively. The difference between our results and
those in [91 is about 3% for the self-capacitance and about 1% for the
mutual capacitance.

In Fig. 3.5, we present the charge distributions on the broad sides
of a rnicrostrip line with t/h = 0.02 and tv/h = 0.1, 1.0, 2.0. We use
24 pulses on each broad side, and 2 pulses on each narrow side. It is
observed that the charge density on the bottom side of the microstrip
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Compaxison of Capacitance Matrix Elements (F/m).

element present work [19] [10]
•C31 0.6301 x 10' :  0.6233 x 10 - 0 0,6307 x 10- ]° "02

000

C J -.5929 x10 -L -0.5931 x O jjj.586x10 -j, .i

CC

I-2

2 3

S- 00-

Table 3.1 Comparison of capacitance matrix for two symmetrical strip-
lines of finite thickness.

is about an order larger than that on the top side because the electric'
field between the microstrip and the ground plane is stronger than the
electric field above the microstrip. Also, as the width of the mLicrostrip
increases, the edge effect becomes less significant.

In Table 3.5, we present the results of resistance calculation for a
t microstrip line compared with those in [121. The discrepancy is 7.6%
for w/h = 0.1, and 3.4% for w/h = 2.0. The calculation of the
resistance depends on the square of the charge density distribution

which possesses edge effect as shown in Fig. 3.5. Hence, even when two
different methods can predict close capacitance results, it is possible
that the resistance results can deviate by a higher percentage.

Next, we present the frequency response and the transient response
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Comparison of Capacitance Matrix Elements (F/m).

element present work 9] (10]

C11 0.9225 x 10 0.9165 x 10"' 0.9224 x 10- '0

C 2  -0.8539 x 10"1 -0.8220 x 10 - 11 -0.8504 x 10- "
C2, 0.9225 x 10-'o 0.9165 x 10- '* 0.9224 x 10- 'a

J 2 3

2co 0 1

a.. 00

Table 3.2 Comparison of capacitance matrix for two symmetrical ml-
crostrip lines of finite thickness.

of two symmetrical microstrip lines. The driving voltage is assumed to
have a sinusoidal pulse waveform V1(t) with duration r = 200 pico
seconds as

J (1/2)[1 - cos(2t/r)], 0 < t <

Sv((t) (82)
0, elsewhere

The frequency response and the transient response are presented
'A ,in Fig. 3.6(a) and Fig. 3.6(b), respectively, with all the four load

impedances equal to the characteristic impedance of the even mode
Zo. In Fig. 3.6(a), V1(0) is the voltage at z = 0 along line 1, VI(l)
is the voltage at the receiving port, V2 (0) is the near-end coupling,
and V2(1) is the far-end coupling. The increase of V2(/) with fre-
quency shows that the high frequency components are responsible for
the far-end coupling[16].

.7'
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Comparison of Capacitance Matrix Elements (F/m).

.element present work [9}
C11 0.3827 x 10- 0 0.3720 x 10- '

C22 -0.6884 x 10- " -0.6889 x 101

C33 0.2245 x 10 - 10 0.2169 x 10-'0

1.0 ...

1.06 0.5

0.7 , 7. .7

[ oi :1:

-0.3 -0.1 0.1 0.3

Table 3.3 Comparison of capacitance matrix for two microstrip lines of
finite thickness embedded In the same layer of a two-layered medium.

In Fig. 3.6(b), the even and the odd modes propagate in different
velocities, and the odd mode propagates faster than the even mode.
Hence, the waveform. V(1) becomes broader than V1(0), and V2(1)
shows the split of the odd and the even modes. The waveforms VI(0)
and V2(0) after t = 800 ps are due to the -'flections by the load
impedances at y = 1. Since the load impedances are chosen to be the
same as the characteristic impedance of the even mode, only the odd *

mode is reflected.
In Fig. 3.7, the transient response is presented with all the four

. . ."i
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Comparison of Capacitance Matrix Elements (F/rn).

element f present work j 9]

Cl 1  0.3772 x 10'2 0.3651 x 10 0

C12____ -0.1583 x 10" -0.1562 x 10"

C2  0.2152 x 10.-I0 0.2099 x 1

z

~07

0.5

0. -

-0.1 0.1
00-

Table 3.4 Comparison of capacitance matrix for two m-icrostrip lines of
finite thickness embedded In different layers of a two-layered medium.

load impedances equal to the characteristic impedance of the odd mode
Z00,o. The split of the odd and the evjn modes is observed again. The
waveforms V1(0) and V2(0) after t = 800 ps show that only the even
mode is reflected, and the reflected signal arrives later than that in
Fig. 3.6(b) because the velocity of the even mode is slower than that

r of the odd mode.
'1 In Fig. 3.8 and Fig. 3.9, we present the transient responses of

two symmetrical microstrip lines with .9 = 0.25 mm, and a = 0.375
nun, respectively. The load impedances are chosen the same as the
characteristic impedance of the even mode. Compared with Fig. 3.6(b),
it is observed that the coupling signals V12(0) and V12(l) become weaker
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Figure 3.5 The charge distribution on the broad sides of a microstrip
line with finite thickness, 4E = 11.7, h = 2cm, t/h = 0.02, potential on the
milcrostrip surface Is 1 volt, 24 pulses per broad side, and 2 pulses per
narrow side.

as the separation 3 is increased.
In Fig. 3.10, the transient responses with a complex dielectric con-

stant e, = 10 + iO.1 are presented. Tile signA amplitudes are smaller
than those in Fig. 3.6(b) due to the dielectric loss. In Fig. 3.11, the
transient responses with copper as the conductor material are pre-
sented. The surface resistance is assumed to be 2.61 x i0VI ohms.
The signal amplitudes are slightly different from those with a perfect
conductor because the copper itself is good conductor.
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Comparison of Conductor Loss Parameters.

w/h R(Al/m) R(l/) [12] oZoh/R. (dB) jZoh/R. (dB) [121
0.1 0.07125 0.06605 23.713 21.981

0.2 0.04477 0.03993 14.899 13.289
0.3 0.03398 0.02986 11.309 9.937

0.4 0.02795 0.02400 9.303 8.120

0.6 0.02124 0.01848 7.069 6.150

1.0 0.01492 0.01315 4.967 4.376
1.2 0.01308 0.01173 4.353 3.904

1.4 0.01165 0.01063 3.876 3.538
2.0 0.00872 0.00843 2.901 2.807

Table 3.5. Comparison of the conductor loss parameters for a microstrip
line of finite thickness.

Conclusions

The spectral domain scalar Green's function in a lossy isotropic
stratified medium is derived. A rigorous integral equation formulation
for the charge distribution on the surfaces of the microstrip lines with
finite thickness embedded in arbitrary layers of an isotropic stratified
medium is derived. Using the spectral domain Green's function, a mul-
ticonductor transmission line analysis is formulated to investigate the
propagation properties of coupled lossy microstrip lines. Both the fre-
quency and the transient responses of coupled lines with different load
conditions can be obtained. An efficient algorithm is devised based on
this approach.
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Figure 3.6 Response of two symmetric microstrip lines, h = 0.2mm,
w = 0.125mm, t = 5pum, s = 0.125mm, I = 5cm, c, = 10, all conductors
are perfect, Z1 = Z2 = Zo Z 72.2700. (a) Frequency response.
(b) Transient response.
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Figure 3.0 Transient response of two symmetric microstrip lines h=
0.2mm, w = 0.125mm, t =5pum, as 0.25mm, I = 5cm, e, =10, all
conductors are perfect, Z, = 2 = 3 Z4 ZO Z- 66.34501.
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Figure 3.10 Transient response of two symmetric microstrip lines, h=
0.2mm, w ==0.125mm, t = 5jum, s = 0.125mm, I = 5cmn, e, = 10 + iO.1, a11
conductors are perfect, Z, Z2 Zg Z4= Zo 72.270fl.
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Figure 3.11 Transient response of two symmetric rnicrostrlp lines, h=
0.2mnm, w, = 0.125mm, 9 5pum, a=0.125mm, I = 5cm, e, =10, alH
conductors are copper, Z, Z2 Z3 =Z= ZO 72.2700l.
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A Hybrid Method for the Calculation of the
Resistance and Inductance of Transmission

Lines with Arbitrary Cross Sections
Michael J."Tsuk, Member, IEEE, and Jin Au Kong, Fellow, IEEE

S

Abstract-The frequency-dependent resistance and Induc- which was extended to higher frequencies by Kennelly
tance of uniform transmission lines are calculated with a hybrid and Affel [2]. Haefner's 1937 paper [31 represents the
technique that combines a cross-section coupled circuit method
with a surface integral equation approach. The coupled circuit most extensive experimental data on the resistance of x
approach is most applicable for low-frequency calculations, while rectangular conductors with a wide variety of width-to-..

the integral equation r pproach is best for high frequencies. The thickness ratios. More recently, Weeks et al. [4] did simi-
low-frequency method consists in subdividing the cross section lar work as part of a theoretical treatment of the problem.
of each conductor into triangular filaments, each with an as- In terms of theoretical work, the circular conductor was
sumed uniform current distribution. The resistance and mutual
inductance between the filaments are calculated, and a matrix is the first case considered, since it allows an analytical
inverted to give the overall resistance and Ir,,actance of the solution Maxwell [51 examined nonperiodic current;
conductors. The high-frequency method expresses the resistance Kelvin [61 solved the periodic case. Carson [7] gave a
and inductance of each conductor in terms of the current at the series solution for the two-wire proximity effect. Cock-
surface of that conductor and the derivative of that current croft [8] used the Schwarz-Christoffel transformation to
normal to the surface. A coupled integral equation is then
derived to relate these quantities through the diffusionequation obtain a high-frequency approximation to the skin effect
inside the conductors and Laplace's equation outside. The which was expressed in terms of elliptic integrals. Wheeler
method of moments with pulse basis functions is used to solve [9] discussed the "incremental inductance" rule, which is
the integral equations. An interpolation between the results of a high-frequency estimate of both the skin and proximity
these twe methods gives very good results over the entire fre- effects. More recently, Casimir and Ubbink [101, [11]
quency range, even when few basis functions are used. Results
for a variety of configurations are shown and are compared with prfsented an overview and summary of the basics of the

experimental data and other numerical techniques. skin effect, with formulas for the high-frequency limits of
simple cases.

In the "filament techniqtie," the conductor (usually
1. INTRODUCTION rectangular) is divided into a large number of rectangular

W ITH the ever-increasing speed and density of mod- filaments, which are considered to have uniform current
ern integrated circuits, the need for electromag- distribution within them. Graneau [12] uses a power-series

netic wave analysis of phenomena such a., the propagation approach in frequency, which Weeks et al. [4] dispensed
of transient signals, especially the distortion of signal with. Silvester expands the current in a flat conductor [131
pulses, becomes crucial. One of the most important causes in a series of eigenmodes and the current in a conductor
of pulse distortion is the frequency dependence of con- of arbitrary shape [14] in filaments. In both cases he
ductor loss, which can be incorporated into circuit models ignores the effect of the placement of the return current,
for transmission lines as frequency-dependent resistance or, in other words, the proximity effeit. While these
and inductance per unit length. Expcrimental work mena- filament methods tend to be very good for low frequen-
suring the resistance and inductance of conductors has cies, since the current density is then almost uniform, they
concentrated on circular and rectangular cross sections. do not model singularities of the current density at high
Kennelly el at. [1] did a thorough experimental study, frequencies well.

The other class of methods involves solving the mag-
Manuscript received November 21, 1990; revised April 2, 1991. This netic vector potential integral equation [151-121]. The
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calculate the current distribution inside but does not give distribution is used. The resistance and inductance matri-
any general way to determine that field. The more recent ces for the patches (0 and i) are then calculated, where
work of Cangellaris [22] applies the boundary conditions these matrices are defined by
developed in the filament approaches to the magnetic dv
vector potential integral equation, thus removing one of - = (iw - )t (2)
the principal difficulties of that method; however, it still dz

requires modeling of the current throughout the cross where v is the column vector of the voltage differences
section. between the patches and the reference patch, and L is the

In recent years, new methods have been developed column vector of currents flowing in the 1 direction
which require modeling the current distribution only on through the patches. There are two conditions on the
the surface of the wires, rather than throughout the cross system: first, that the total current in each wire be the
section. Djordjevi6 et al. [23] assumed a nonphysical dis- sum of the currents in the patches and, second, that the
tribution of current along the propagation direction, which voltage on each patch in a wire be the same, since no
led to an excess resistance at high frequencies. Their work transverse currents are allowed under the quasi-TEM
was modified by Wu and Yang [24] to allow appropriate assumption. Using these conditions, the matrices for the
quasi-TEM propagation. However, since both of these patches can be reduced to the matrices for the wires.
methods depend on the calculation of the normal deriva- For. the calculation of r and i, we follow [4] quite
tive of the current density, they have numerical difficul- closely. The elements of the resistance matrix of the
ties at low frequencies, when the current is almost uni- patches are
form and the normal derivative is small. 1 1

The technique presented in this paper is hybrid cross- rjkk = +

section coupled circuit/surface integral equation ap- aAjk oA 0,
proach. For low frequencies, a filament method based on 1
the work of Weeks et al. is used, except with triangular rk., -A, m, k * n (3)
rather than rectangular patches. For high frequencies, a

surface integral equation method is used. However, in where the first subscript indicates the wire, the second
contrast to previous work, the calculation of resistance the patch within the wire; Ajk is the cross-sectional area
and inductance is based on power dissipation and stored of patch k on wire j, and patch 0 on wire 0 is the
magnetic energy, rather than on impedance ratios. It will reference of voltage. Also folowing [4], the elerients of
therefore be more easily extended to structures where the inductance matrix can be written as the sum of partial
nonuniform propagation can occur. In the middle range inductances:
of frequency, an interpolation is made between the results
of the two methods. Since this is a frequency-domain ljk.m, = j'k.mnt - _lj.o!0C - l00.mn + 10000 (4)

method, we will assume an e - "' dependence to all quan- where the partial inductances are given by
tities. 

)9 ff iff dII. CRoss-SEcroN COUPLED CIRCUIT METHOD 47rAjk /,fn

For low frequencies, we use a two-dimensional cross- -In [(x- x') 2 + (y - y,)2] (5)
section coupled circuit method to find the resistance and
inductance matrices for multiple transmission lines with where x and y are coordinates on patch jk, and x' and
uniform cross sections. We assume that these transmis- y' are coordinates on patch ran.

sion lines consist of signal lines over a common return In the Weeks method, the patches over which the
P d integrals in (5) are done are rectangles, and the quadruple

path or "ground plane." The matrices R and L are integral is done quite easily in closed form. However, it is
also possible to evaluate the quadruple integral in closed

dV form for any polygonal shapes; the details are rather
S(iY_ -.- I (1)complex and are left for the Appendix. We therefore use

triangular patches as the most flexible means of modeling
where V is the column vector of the voltage differences conductors with arbitrary cross sections; polygons are
between the wires and a reference wire (ground plane or covered exactly, and we are able to model quite closely
return conductor), and I is the column vector of currents other shapes, such as circles.
flowing in the wires. Once the resistance and inductance matrices for the

Here is an overview of the cross-section coupled circuit patches have been obtained, we proceed in the following
method. Each conductor is divided into triangular patches manner. Taking
and one of the patches from the return conductor is dv 1

chosen to be the reference. The current is assumed uni- - = I r t- - z-t.. (6)
form on the cross section of each patch; in other words, a dz

piecewise-constant approximation to the actual current The matrix - is inverted, and Y = -' Writing out the
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elements of the matrix,
N N,,, dV

'ik E E Yj&.m .-' - (7) j
rn-0n-I ' a

where N is the number of wires and N,, is the number of

patches on wire m. The conditions on v and L discussed
above are applied, to give

N dV
y- - (8)

Jm dz

where V and I are the voltage and current column vectors

for the wires and where
N N_ ,

-- , E Yjk.n- (9)

Inverting Y gives
Fig. 1. Coordinate system for surface integral equation method.

=R- iwL. (10)
Thus, the frequency-dependent resistance and inductance Using J - crE, this reduces to

matrices for the wires have been obtained. V2j, + iWoJ, _ O. (17)
In [4], the distribution of patches was a function of

frequency; as the frequency increased, the patches were There are two boundary conditions at the interface of
concentrated at the edges, where the current is. However, the conductors and free space: the continuity of tangen-

as shall be shown, it is more efficient to switch to a tial H and of normal B = H. If H outside is expressed

surface integral equation technique for high frequencies; in terms of A 2 , and H inside in terms of J., the condition
in this paper the distribution of triangular patches is not on H reduces to

altered as the frequency is increased. This has the advan- 8j z  aA z
tage that, since the resistance and inductance matrices of - = iwo- (18)

the patches are independent of frequency, r and I need an an

be calculated only once, no matter for how many frequen- which is satisfied along all the conductor-free space in-

cies we wish to calculate R and L. terfaces. The boundary condition on normal B is more
difficult. Assuming that all the materials have the same

Ill. DIFFERENTIAL EOUATIONS AND permeability,

BOUNDARY CONDITIONS 8 J, BA

In this section, the basic equations and boundary condi- Z- (19)

tions which will be used in the surface-integral equation aB

method will be derived. The coordinate system used is If the derivatives of two quantities along a line are equal,

shown in Fig. 1. We will rely heavily on quasi-TEM then those quantities must be equal, to within a constant:

assumptions. First, outside the wires, we assume that the J, - iwo[ A, - Aq]. (20)

fields are transverse, and that they obey Laplace's equa-

tion. In other words, Maxwell's equations outside the A q is constant over a single conductor, but can vary from

wires become conductor to conductor.

V X H= 0 (11) Finally, it is necessary to be able to specify the total

V- H = 0 (12) current flowing on a wire. Using Green's first identity,

where V here is only the transverse operator, 18/8x + f f dgc4V24 + V.,.V, =,,dlBqi'  (21)
yB/By. The vector magnetic potential, A, is defined such an

that ;.H = V X A. By the quasi-TEM assumption, .J -J. where dS is a two-dimensional integral over a cross-sec-

and A - iA, and it can be shown that tional area, and dl is a one-dimensional integral along the

V 2A, 0. (13) closed contour bounding that area. Also, the normals are

Also, inside the conductors, the displacement current is defined as pointing out from the region of interest. With

ignored; Maxwell's equations become v - J, and 4, , 1, and considering (17),

V xE = iwAH (14)

V.H = 0. (16) which is an expression for the total current flowing in a
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wire in the 1 direction in terms of quantities on the side the wires,
surface. M*

IV. DETERMINATION OF CIRCUIT PARAMETERS L = - wires a27

Eventually, the quantities of interest are the resistance a wir"-", 2 (27)

and inductance per unit length of these conductors. It jignal wire an

turns out that it is possible to express these quantities in
terms of the current and its normal derivative on the The mutual resistance and inductance are calculated

surface of the wires. This is useful, because it means that from energy considerations, and from the self terms calcu-

the problem can be formulated in terms of a set of lated above. If we specify a current I, to flow on line i,

coupled integral equations involving only these surface and - I. to flow on line j, we can calculate the power

quantities, allowing a great savings in computation. The dissipated, Pd, and the stored magnetic energy, WI,, very

resistances and inductances will be derived through power easily by the above technique. This gives

and energy considerations. 1
For the resistance, consider a case with a current I R 1 =-2(R~ i + R~i-4 t/lf2) (28)

flowing in a signal wire and returning in a reference, for
example a ground plane. Starting with the power defini- and
tion of resistance, 1

L,= (L,,+ L=j-8W,,/1'). (29)
R 2 Pd f f ds E,: . f f dslj,12 2)2= i j

w(23 ff .V. DERIVATION OF COUPLED INTEGRAL EoUATIONS1=112= IffdsJ4l" IffdsJ2 "I 2  3) V
In order to complete the formulation, integral equa-

tions are required which relate A, to dA, IOn outside the
where the integration in the numerator is over all wires, wires and J2 to 8J, /On inside the wires. Starting from
while that in the denominator is only over the signal wire. Green's theorem:
The numerator can be put in a more useful form, using
(21) with 4 = J. and o = J,*, and its complex conjugate, ((dS(6V2 _ oV =Odl, 4 d)
together with (17) to get JJr -cn (30

_2 r where the integral dS' is over a cross-sectional region, the
fj dSJ2 i"jjdSJ, j-integral dl' is over the contour bounding that region, and

the normals point out from the region of interest. In

!-- ffds 2 J general, let +(p) be either A, or J,, where p is position2= u 2 2f , 1 in the two-dimensional cross section. Since T'(p) satisfies
V2 Pk + Cp' = 0, where C = 0 for Laplace's equation and

di J a J, .a ,* C = icwtoc for the diffusion equation, a Green's function,

2waalTo [ O n -nJ G(p, p'), can be found which satisfies V 2 G + CG=
- 8(p - p'). Substituting T for o, and G for 46 in (30),

dlm - . (24)
( ff dS'.(p')1(p - p')

Including the total current squared, 1112, from (22), O'd'(P') T G(pp') (31)

dl Im 
an 

-in-
all wires (an The integral equation will be formulated on the surface,

R = WI. a12 1' (25) so both p and p' are on the surface. This places 8(p - p')

dl -n just on the boundary of the dS' integration, and this must
ignal wire - be treated carefully. The most straightforward method is

Similarly, starting with a magnetic stored energy defini- that integrating a delta function that lies on thc edge of

tion of inductance per unit length, L: the range of integration gives 1/2. With this,

4W f f dSH -H dl'G( a,') ( l')
L -, flak1,12 (26) d  an'

, [aG(t,1r) 1 1
where the range of integration for the numerator is over an+dlP*(l') On' (32)

all space. Using a technique similar to that for (25),
combining the contributions from regions inside and out- Integral equations for both A. and J. can now be
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obtained. For the outer equation (13), and the diffusion equation, (34) and (36). All information
BA2(!') about the boundaries is contained in the paths of integra-

u *i ed l ' G . ( 1 r'1) n 'tio n .

all wiresan
f 1 ( VI. SOLUTION OF COUPLED INTEGRAL EoUATIONS

-01 an' wi3)2 We solve these coupled integral equations, (37), (38),
and (39), by the method of moments with subdomain basis

where functions. Expanding the unknown functions J, and

.1p( _ , y . 4 i ,n as the sum of known functions times unknown
G,(p, p') - - n1  - xy)+(y - yj)~ (34) coefficients,

and where the sign change in (33) is due to the normals J,= _Ej.B.(I) (40)

pointing into the region of interest. The range of integra- ,n

tion is over the boundary of the free-space region, in . (41)
other words, over the surface of every wire. an B

Similarly, for the inner equation (17), for each wire, Simple pulse basis functions are used, normalized so that

JG( 1 ') the integral is unity:
ir da n',BI,.. ( 1 / A m , if lm , I Im + A . 4 2wire d G n' !G(t,) B1(1)={ (/ otherwise. (42)

= wredJ'1( 1') + (l - 1') (35) This gives a piecewise-constant approximation to the sur-
.ic an 2 face quantities. The same functions are used for testing,

where thereby implementing Galerkin's method.
It turns out that, for high frequencies, the current

G(p,p') = 4 Ho(e'/'Vw- jf(x - x') 2 + (y - y)2) distribution on a wire is similar to the charge distribution
on a perfect conductor. For polygonal wires, this means
that the current will be concentrated at the comers.

- 2-vker a, -o'(x - x') 2 +(y - y,) 2  Therefore, we find it advantageous to concentrate the
2 :basis functions in the same way. For three basis functions

-ik (x - x') 2 +(y-y) 21 (36) on a side, for example, the two in the corners are each
one eight the length of the side; the center one, three

where "ker" and "kei" are the real and imaginary Kelvin quarters. These values were determined empirically, by
functions. This equation applies to each wire separately; seeing which division gave results closest to those for a
the range of integration is over the surface of that wire. large number of basis functions.

Using the boundary conditions (18) and (20) to elimi- We can thus approximate the coupled integral equation
nate A, from the integral equation for the outside fields as a matrix equation:
and add the condition on the total currents from (22),

--( - V1'U • i' 0-
S dI' Gj(1, 1') d1'' A dl' IS 0 (43)

jil wires a ' all wires 0
['z )+ i''w ][oA - .-r  1 -) (37
(+ [ n 28(1') (37) where J is the vector of the unknown jm's (current), K is

the vector of the unknown km's (normal derivative of the

d1dG(,') dl'(l') current), and A. is the vector of the A,.'s (constants of
a' -. dl( vector potential). The total currents on each wire arewireq ire 9

aG4 (I, I') 1 "specified by the vector I. The matrices V, W., U., S, V,
I-(- - ')I (38) and Uj arise from integrals of products of the Green'san' 2 functions with the basis functions and are completely

all known. The solution of this matrix equation by LU de-
di - - l~o'Iq. (39) composition provides us with an approximation for J, and

wifeq an aJ/ n , and through (25) and (27), R and L. Since the

There is one important thing to note about these inte- outer matrices V., U., P., and S, are independent of
gral equations. Contrary to simpler electrostatic prob- frequency, they only need to be calculated once. We can
lems, the boundary conditions are neither Dirichlet nor make use of this fact by LU-decomposing this part of the
Neumann; both G and aG/On' must be kept in the large matrix only once, completing the decomposition
equations. Because of this, the formulation is in terms of with the rest of the matrix for each value of frequency.
the free-space Green's functions for Laplace's equation For the pulse basis functions used, the outer matrices can
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X 0.3 mm. Kennelly et al. (1]

- 0.3mm, Hybrid Technique. (54)
... . 0.3mm. Series Solution

Hybrid Technique. (25) 0 8mm. Kennelly et ol. [1]
e o2 2 - - 8mm, Hybrid Technique. (54)

Weeks' Method 4 .... 8mm, Series SolutionE" 0 Hoefe 13] 1E

E .5 E

C
q 0

XA

100 1000 10* 10 100 1000 10

Frequency (Hz) Frequency (Hz)
Fig. 3. Resistance or Iwo circular wires.

Fig. 2. Resistance of isolated square wire.

be eiressed in closed form. The inner matrices, V, and 600....... ... . ....

L', have, at worst, double numerical integrals, and for the Q.
case of the interaction between elements which lie on the CO

same line, these can be expressed in closed form. Also, at
high frequencies, owing to the highly local nature of the
diffusion Green's function (36), which results from the E 400
rapidly decaying asymptotic nature of the Kelvin func- "
tions, only the neighboring patches have an appreciable

interaction; those integrals can be calculated quite rapidly.

VII. RESULTS 200 X 0.3 mm. Kennelly et al. [1]

In these results, we will compare the hybrid method, 0.3mm, Hybrid Technique. (54)
-- 0.3mm, Series Solution

described above, with experimental results, as well as with 0 8mm, Kennelly et ol. [I]

two other methods: the Weeks method [41, which models - - 8mm. Hybrid Technique. (54)
the current throughout the cross section, and the work of ... 8mm. Series Solution
Djordjevi6 et al. [23], which models an equivalent current 10  1010100 1000 10'

only on the surface over all frequencies. As shall be seen,
by using a hybrid method, we can avoid the weaknesses of Frequency (Hz)

both of these methods. Fig. 4. Inductance of two circular wirms.
First, we consider the example of an isolated square

conductor, 4.62 mm on a side, with conductivity a - 5.72
x 107 (fl -m) - . While the inductance per unit length is and 4, the results for 13 basis functions per circle (54
undefined, the hybrid method can be used to calculate unknowns) are shown, compared with the experimental
the resistance per unit length and for comparison with the results of Kennelly et al. [1]. The fit is again quite good
experimental results of Haefner [31 and the results ob- with the experimental results. Since the Weeks method is
tained by using the Weeks method [4]. As can be* seen limited to rectangular elements, it is not capable of han-
(Fig. 2), the fit for the new method is quite good. In this dling this case.
example, only 12 basis functions (25 unknowns) were Next, we take the example of two parallel rectangular
used, three on a side. By comparison, the Weeks method wires, a - 5.6 x 107 ("1 - m)- '; the configuration is shown
with 49 basis functions does not give as good a result. in Fig. 5. In Figs. 6 and 7, we compare the hybrid method,

The next example is that of two parallel circular wires, the Weeks method, and the results from [23] calculated
a - 5.84 x 107 (1- m)- t . The wires have a diameter of from a purely surface integral equation approach. It can
11.68 mm, and a separation of 0.3 mm and 8 mm for the be seen that the hybrid method agrees with each of the
two cases. Here, the circles were modeled as n-sided others in its range of validity. Also, the numerical instabil-
polygons having the same cross-sectional area. In Figs. 3 ity of purely surface-integral equation methods in calcu-
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2 mm 2 mm

1: Hybrid Technique 82)
k2 mm 1F~ m l-.- : Weeks' Method (509)

0.2 1m1  : Djordevie (82) (23]02mm 1 mm 2 [" 600 .. - - I1: Hybrid Technique (82)-
---- I0I Case 11 b. It: Weeks' Method, (449)

Case 1 Case II :\ 0 : Djordevic (130) (23]
E

Fig. 5. Two rectangular wires.

4 4
10 c

o400-

1000

E

100 200 '
40 100 1000 04 5 106 107 10 10' 1010C "

Frequency (Hz)

- : h Hybrid Technique (82) Fig. 7. Inductance of two rectangular wires.
104- - 0 - I: Weeks' Method (509)

X I: Djordevic (82) [23]
- - II: Hybrid Tecanique (82) "fo

I1: Weeks' Method, (449) 3 30 l
0 I1: Djordevic (130) [23] 0m

I I f I I I

100 1000 10, 105 106 107 108 10 1010 1 J

Frequency (Hz)

Fig. 6. Resistance of two rectangular wires. Fig. 8. Three rectangular wires over a ground plane.

integral equation result, both with a large number of basis
lating the low-frequency inductance can be observed. It is functions. The same trend can be seen as in the previous

also clear that the hybrid method in general requires cs the s n a e error in the reu

fewer basis functions, and thus less computation time, inductance, as predicted by the Weeks method. This is

than the Weeks method. In fact, as the frequency in- dutonte ac that the Weeks method oi m
creaes nd he ondutor beomemanyski dethsdue to the fact that the Weeks method does not model

creases and the conductors become many skin depths the concentration of the current on the ground plane
across, even a large number of basis functions in the under the signal lines, since at high frequencies most of

Weeks method leaves us with a significant error. This is the thesia conentrate at th crnes f o
due o te iabiityof he Weksmetod o crretlythe patches are concentrated at the corners of the grounddue to the inability of the Weeks method to correctly plane, far away from the current. If one improves the

model the distribution of current along the surface, which Wee mto y re c the maorit y of i s fuc
is rucal o te clclaton f rsisane a suh fequn-Wees method by restricting the majority of basis func-

is crucial to the calculation of resistance at such frequei- tions to be under the-signal lines, one gets results which
cies. Tablcs I and II compare the results of the hybrid

method with the Weeks method for the case of two agree with the hybrid method quite closely.

square wires, including CPU times, on a Digital Equip-
ment Corporation VAXstation 3500, running VMS. As VIII. CONCLUSIONS
can be seen, the cost of the hybrid method in terms of A technique has been developed to calculate the skin
CPU time is much lower than the Weeks method for effect resistance and inductance of transmission lines with
anything more than a moderate number of basis func- arbitrary cross sections. This technique provides accurate
tions, and especially for high frequencies. answers over a wide range of frequencies, including the

Finally, we consider the case of three rectangular con- range where neither low-frequency (direct current, uni-
ductors over a ground plane, a - 5.81 X 107 (" - m)-'. form distribution) nor high-frequency (skin depth) ap-
The configuration is shown in Fig. 8, the resistance of the proximations are valid. The technique is a hybridization
first line in Fig. 9, and the self- and mutual inductances in of two distinct methods. The first is a cross-section cou-
Fig. 10. Since our method is not capable of modeling an pled circuit approach, subdividing the wires into triangu-
infinite ground plane (since imaging is very difficult with lar patches which are assumed to have uniform current
an imperfect conductor), a very large conductor was used, distribution. This method is best for low frequencies,
4 mm by 0.5 mm, in its place, with more basis functions when the physical current has very little variation across
concentrated in the area under the signal lines. We coin- the cross section. The second method is in terms of a
pare with the Weeks method and with a purely surface coupled integral equation, linking the current and its
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TABLE !
RESULTS AND CPU TiMEs FOR Two Sou,,U WIRES WITH

.HYBRID METHOD

Basis Number of Frequency R L CPU Time
Functions Unknowns (Hz) (mfl/m) (nH/m) (s)

3 x 3 50 (Preprocessing) 12.99
102 8.929 599.5 1.35
104 11.07 577.7 3.36
106 94.76 466.6 1.24

7x7 114 (Preprocessing) 19.16
102 8.929 599.5 1.37
104 11.13 579.6 17.00
106 98.54 466.5 6.77

15 x 15 242 (Preprocessing) 155.79
102 8.929 599.5 33.44
104 11.15 580.2 156.49
106 98.84 466.9 50.06

TABLE II
RESULTS AND CPU TiMEs FOR Two SOUARE WIRES wrrH

THE WEEKS METHOD

Basis Number of Frequency R L CPU Time
Functions Unknowns (Hz) (mfl/m) (nHi/m) (s)

3x3 17 102 8.929 599.5 0.76
104 10.46 586.1 0.76
106 118.8 466.9 0.75

7x7 97 102 8.929 599.5 50.14
104 11.10 581.1 49.87
106 92.60 468.5 49.43

15 x 15 449 102 8.929 599.5 3684.42
104 11.22 580.1 3630.31
106 91.80 468.1 3639.78

00 1000 I I

- L 11 : Hybrid Tech. (104)
- - Lt 2: Hybrid Tech. (104)

Hybrid Technique (104) 1.2. L Surf.lnt.Tech. (536)
..... Surface Int. Tech. (536) .... L Surf.lrt.Tech. (536)

O Weeks' Method (538) X L,1: Weeks' Method (538
+ Improved Weeks (167) + L+2L Weeks' Method 538

E- 0 L: Improved Wee ks 167

E C

107 V4 500

" .94. + ++++

10 I

1000 10' 105 106 107 106 1 0g 1000 104 105 106 107 108 109

Frequency (Hz) Frequency (Hz)

Fig. 9. Resistance of three rectangular wires over a ground plane. Fig. 10. Self- and mutual inductances of three rectangular wires over a
ground plane.

normal derivative on the surface of each wire with the middle frequency range. an interpolation between the two
magnetic vector potential and its normal derivative on the. results gives very good accuracy with few basis functions.
same surfaces; the resistance and inductance are both The interpolation function was based on the average size
expressed in terms of these surface quantities. This of the conductors, measured in skin depths, and was of
method is best for high frequencies, when the current is the form 1/(1 +0.160 2 /64'), where a is the average cross
almost all confined to the surface, and the diffusion section of the conductors, and 8 is the skin depth. The
Green's function (eg. (36)) is very localized. For the optimization of the interpolation function is an area of
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further research. By choosing triangular patches for the V
cross-section method and free-space Green's functions for
the surface method, a single program is able to handle
arbitrary conductors. The method is limited at present to
infinite, uniform lines, although nothing theoretically pro-
hibits extension to three-dimensional lines. The theory (xv,y.)
behind this method is not necessarily limited to configura-
tions with uniform dielectrics, but problems in the de-
finitions of resistance and inductance, stemming from
difficulties with the extension of current and especial!y (xE, YU) u
voltage to non-TEM lines, make such an extension of the
method not immediately obvious. For most practical cases, Fig. 11.. Coordinate system for mutual inductance of triangular patches.
however, the effects of nonuniform dielectrics on the
resistance and inductance can be ignored, so that the and
method presented in this paper will give quick and accu- a2t a (t . (
rate results. an an' a y-2cosct. (A7)

APPENDIX Letting x a x,. - x, and y a y,. - y., the following double

CLOSED-FORM EXPRESSION FOR PARTIAL INDUCTANCES integral over the pair of line segments is obtained:

The problem is to evaluate the integral f(u,v) = fdu f dv(5 -2 n ) cos,0

1=ffdSffdS',,, lnt (Al) +(6-41nt)(y + vsin4)

where I (x-x')2 +(y-y')2 and the areas of integra- ((u-x)sin4'+ ycos i) (A8)

tion are the triangular patches (ij) and (kin). Using the where t,=(u-x-cos4w) 2+(y+sin 4) 2. These inte-
fact that In t = V2V'2tz2(ln -3)/64, and Green's first grals can be done in closed form [25]. If the length of the
identity (21) dl segment is a, and that of the dl' segment is b, the

I acontribution to (Al) from this pair of line segments is
I , d __[,2( t -3)] (A2) f(a,b)-f(a,O)-f(O,b)+f(O,O). The total is thus the

64 an an' sum of the contributions from each pair of line segments,
where the integrals dl1, and dl'm are over the perimeters one from the (ij) patch and the other from the (kn)
of patches (ij) and (kin), respectively, and the normals patch.
point out from the patches. Using the chain rule, REFERENCES
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